A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ecological enhancement of coastal engineering structures: Passive enhancement techniques. | LitMetric

The rock type used in coastal engineering structures impacts biodiversity, but its effect has been understudied to date. We report here on whether different combinations of rock material and rock mass properties can improve habitat suitability and early phase ecological outcomes on coastal engineering structures. We examine two coastal engineering schemes that used different granites during construction. At site one, Shap granite boulders with a high number of cm-dm surface features (e.g. ledges) were deliberately positioned during construction (called passive enhancement), to a) maximise the provision of cm-dm scale intertidal habitat and b) determine which scale of habitat is best for ecological enhancement. At site two, Norwegian granite boulders were installed without passive enhancement, allowing for a direct comparison. Passive positioning of Shap granite boulders led to an increase in limpet (Patella vulgata, Linnaeus, 1758) abundance within two years but few limpets were recorded on the non-enhanced Norwegian granite. Positioning of boulder thus exerts a strong control on the mm and mm-dm scale geomorphic features present, with clear ecological benefits when suitable features are selected for and optimally positioned (i.e. passive enhancement) to maximise habitat features. An EcoRock scoring matrix was developed to aid in the selection of the most ecologically suitable rock materials for coastal engineering worldwide; this can help improve habitat provision on engineered structures in a rapidly warming world.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.139981DOI Listing

Publication Analysis

Top Keywords

coastal engineering
20
passive enhancement
16
engineering structures
12
granite boulders
12
ecological enhancement
8
improve habitat
8
shap granite
8
enhancement maximise
8
norwegian granite
8
coastal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!