Dissolved humic substances (DHS) are ubiquitous in surface and subsurface aquatic environments and greatly affect the redox transformation of organic contaminants as reactants and/or electron transfer mediators. However, little is known about the quantitative relationship between the mediation efficiency of DHS and the physicochemical properties of DHS. Using sulfide-induced nitrobenzene reduction as a model system, we measured the reduction rate of nitrobenzene in the presence of 12 different DHS (20 mgC·L), including 4 commercial humic substances (Suwannee River humic and fulvic acids and Pahokee Peat humic and fulvic acids) and 8 soil humic substances collected as leachates from a wide variety of soils. In addition to the UV-vis absorption and fluorescence spectra, the electron donating/accepting capacities (EDC/EAC) of the tested DHS were measured using an electrochemical approach. A significant linear correlation (r = 0.99, P < .0001) was observed between the observed pseudo-first-order rate constant (k) of nitrobenzene reduction and the sum of EDC and EAC which is defined as electron transfer capacity (ETC) of DHS. A relatively good positive correlation (r = 0.69, P < .2) was shown between the k and the specific UV-absorbance at 254 nm (SUVA), whereas no good correlation was shown between the k and the fluorescence of the C1-C4 components identified by the excitation emission matrices and parallel factor (EEM-PARAFAC) analysis. This study provides a new framework for accurate prediction of the capability of DHS in mediating the redox transformation of organic contaminants. CAPSULE: A significant linear correlation exists between the kinetics of nitrobenzene reduction by sulfide and electron transfer capacity of mediating dissolved humic substances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.139911 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!