Background: Comprehensive indices have been used to quantify the interactive effect of temperature and humidity on hand, foot and mouth disease (HFMD). The majority of them reflect how weather feels to humans. In this study, we propose an alternative index aiming to reflect the impacts of weather on HFMD and compare its performance with that of previous indices.
Methods: We proposed an index defined as the product of temperature and a weight parameter raised to the rescaled relative humidity, denoted by THIa. We then compared its model fit and heterogeneity with those of previous indices (including the humidex, heat index and temperature) by a multicity two-stage time series analysis. We first built a common distributed lag nonlinear model to estimate the associations between different indices and HFMD for each city separately. We then pooled the city-specific estimates and compared the average model fit (measured by the QAIC) and heterogeneity (measured by I2) among the different indices.
Results: We included the time series of HFMD and meteorological variables from 143 cities in mainland China from 2009 to 2014. By varying the weight parameter of THIa, the results suggested that 100% relative humidity can amplify the effects of temperature on HFMD 1.6-fold compared to 50% relative humidity. By comparing different candidate indices, THIa performed the best in terms of the average of the model fits (QAIC = 9449.37), followed by humidex, heat index and temperature. In addition, the estimated exposure-response curves between THIa and HFMD were consistent across climate regions with minimum heterogeneity (I2 = 65.90), whereas the others varied across climate regions.
Conclusions: This study proposed an alternative comprehensive index to characterize the interactive effects of temperature and humidity on HFMD. In addition, the results also imply that previous human-based indices might not be sufficient to reflect the complicated associations between weather and HFMD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.140106 | DOI Listing |
J Phys Chem A
January 2025
School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
In both nature and industry, aerosol droplets contain complex mixtures of solutes, which in many cases include multiple inorganic components. Understanding the drying kinetics of these droplets and the impact on resultant particle morphology is essential for a variety of applications including improving inhalable drugs, mitigating disease transmission, and developing more accurate climate models. However, the previous literature has only focused on the relationship between drying kinetics and particle morphology for aerosol droplets containing a single nonvolatile component.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Electronic Engineering, Faculty of Applied Energy System, Jeju National University (JNU), Jeju City 63243, Republic of Korea.
We have executed a cost-effective approach to produce a high-performance multifunctional human-machine interface (HMI) humidity sensor. The designed sensors were ecofriendly, flexible, and highly sensitive to variability in relative humidity (%RH) in the surroundings. In this study, we have introduced a humidity sensor by using carbon paper (as both a substrate and sensing material) and a silver (Ag) conductive ink pen.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory of Archaeomaterials and Conservation, Ministry of Education, Institute of Cultural Heritage and History of Science & Technology, University of Science and Technology Beijing, Beijing 100083, China.
Palm Leaf Manuscripts represent a significant component of the world's cultural heritage. Investigating their primary chemical components and understanding the transformations these materials undergo under environmental influences are crucial for elucidating their material characteristics and aging mechanisms and developing effective strategies for preventive conservation. This study utilized infrared absorption spectroscopy and X-ray diffraction analysis to examine changes in the primary chemical components of Palm Leaf Manuscripts under varying relative humidity conditions over extended periods.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Anhui Provincial Key Laboratory of Forest Resources and Silviculture, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
Phosphorus (P) is essential for cellular processes, and P fractions within leaf tissues reflect distinct biochemical functions. However, the relationship among foliar P allocation, leaf functional traits, and soil properties in subtropical China remains poorly understood. Here, we investigated four tree species to examine the relationships among foliar P fractions (orthophosphate P, metabolic P, nucleic acid P, lipid P, and residual P), key leaf functional traits (LMA, A, and leaf [N], and P concentrations), and soil properties.
View Article and Find Full Text PDFPlant Dis
January 2025
Guizhou University, Guizhou University, Guiyang, Guiyang, Guizhou, China, 550025;
During a field study in the Baili Azalea Forest Area in Guizhou Province, China (27°12'N, 105°48'E) between May and July 2023, symptoms of leaf spot were observed on Franch. The incidence of leaf spot on leaves was about 12% in a field of 1 hm2, significantly reducing their ornamental and economic value. The affected leaves bore irregular, grey-white lesions with distinct dark brown borders, accompanied by black conidiomata.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!