We have studied the effects of Zn doping on the structural and electronic properties of epitaxial NdNiO thin films grown on single-crystal LaAlO (001) (LAO) substrates by pulsed laser deposition. The films are deposited in two sets, one with variation in Zn doping, and another with variation in thickness for undoped and 2% Zn doping. The experimental investigations show that Zn occupies Ni-site and that the films are grown with an in-plane compressive strain on LAO. All the films show metal-to-insulator transitions with a thermal hysteresis in the temperature-dependent resistivity curves except 5% Zn-doped film, which remains metallic. The theoretical fits show non-Fermi liquid behaviour, which gets influenced by Zn doping. The Hall resistance measurements clearly show that Zn doping causes injection of holes in the system which affects the electronic properties as follows: i) the metallic conduction increases by two factors just by 0.5% Zn doping whereas, 5% doping completely suppresses the insulating state, ii) a reversal of the sign of Hall coefficient of resistance is observed at low temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/abb864DOI Listing

Publication Analysis

Top Keywords

doping
8
ndnio thin
8
thin films
8
electronic properties
8
films grown
8
films
5
switching majority
4
majority charge
4
charge carriers
4
carriers doping
4

Similar Publications

Enhancing Optical Properties of Lead-Free CsNaBiCl Nanocrystals via Indium Alloying.

Inorg Chem

January 2025

School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, PR China.

This study presents the synthesis and characterization of CsNaBiCl nanocrystals (NCs) doped with varying concentrations of In to improve their luminescent properties. Utilizing a colloidal solution method, we systematically varied the In concentration to identify the optimal alloying level for enhancing the photoluminescence (PL) properties of the CsNaBiCl NCs. Structural analysis confirmed that the In-alloyed NCs maintained high crystallinity and a uniform cubic shape.

View Article and Find Full Text PDF

Microelectronic Structure and Doping Nonuniformity of Phosphorus-Doped CdSeTe Solar Cells.

ACS Appl Mater Interfaces

January 2025

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

Optimizing group-V doping and Se alloying are two main focuses for advancing CdTe photovoltaic technology. We report on nanometer-scale characterizations of microelectronic structures of phosphorus (P)-doped CdSeTe devices using a combination of two atomic force microscopy-based techniques, namely, Kelvin probe force microscopy (KPFM) and scanning spreading resistance microscopy (SSRM). KPFM on device cross-section images distribution of the potential drop across the device.

View Article and Find Full Text PDF

Renewable energy-driven electrochemical CO2 reduction has emerged as a promising technology for a sustainable future. However, achieving efficient production of storable liquid fuels at ampere-level current densities remains a significant hurdle in the large-scale implementation of CO2 electroreduction. Here we report a novel catalytic electrode comprising chlorine-doped SnO2 nanoflowers arrayed on the exterior of three-dimensional nickel hollow fibers.

View Article and Find Full Text PDF

The study highlights the significant effects of Zn ions concentration on the optical properties of BaNiZnFeO ferrites, emphasizing the tunability of the band gap through Zn doping and explores their potential to enhance their optical properties. The barium-nickel ferrite powder, with the composition BaNiZnFeO, was synthesized using the ceramic method. The effects of Zn doping were analyzed using X-ray diffraction (XRD) and UV‒visible (UV-Vis) spectroscopy.

View Article and Find Full Text PDF

An investigation into the degradation of ciprofloxacin (CIP) under visible light was carried out using an efficient photocatalyst, i.e., CoFeO@3D-TiO@GA, synthesized by doping CoFeO@three-dimensional-TiO into a hierarchical porous graphene aerogel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!