Engineering the transport of small molecules is an effective approach to improve the performance of microbial cell factories. Transporter engineering can improve the utilization of low-cost alternative substrates, reduce the loss of pathway intermediates, and increase the titer and production rate of the target product. However, transporters are not commonly engineered in strain development programs because the functions of most of the transport proteins are not known. In the recent years, a variety of methods have been developed for identification of transporters for specific substrates and for characterizing transport mechanisms. This review presents recent examples of successful transport engineering for cell factories and discusses the methods for transporter identification and characterization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758712 | PMC |
http://dx.doi.org/10.1016/j.copbio.2020.08.002 | DOI Listing |
Foods
December 2024
Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece.
The specific objective of the present study was to develop computational models, by means of which predictions could be performed regarding the quality of the bulk-tank milk in dairy sheep and goat farms. Our hypothesis was that use of specific variables related to the health management applied in the farm can facilitate the development of predictions regarding values related to milk quality, specifically for fat content, protein content, fat and protein content combined, somatic cell counts, and total bacterial counts. Bulk-tank milk from 325 sheep and 119 goat farms was collected and evaluated by established techniques for analysis of fat and protein content, for somatic cell counting, and for total bacterial counting.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
Anthocyanins are significant secondary metabolites that are essential for plant growth and development, possessing properties such as antioxidant, anti-inflammatory, and anti-cancer activities and cardiovascular protection. They offer significant potential for applications in food, medicine, and cosmetics. However, since anthocyanins are mainly obtained through plant extraction and chemical synthesis, they encounter various challenges, including resource depletion, ecological harm, environmental pollution, and the risk of toxic residuals.
View Article and Find Full Text PDFUnderstanding kinase action requires precise quantitative measurements of their activity . In addition, the ability to capture spatial information of kinase activity is crucial to deconvolute complex signaling networks, interrogate multifaceted kinase actions, and assess drug effects or genetic perturbations. Here we developed a proteomic kinase activity sensor platform (ProKAS) for the analysis of kinase signaling using mass spectrometry.
View Article and Find Full Text PDFACS Nano
January 2025
Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
Encapsulating living cells within nanoshells offers an important approach to enhance their stability against environmental stressors and broaden their application scope. However, this often leads to impaired mass transfer at the cell biointerface. Strengthening the protective shell with well-defined, ordered transport channels is crucial to regulating molecular transport and maintaining cell viability and biofunctionality.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
Objective: This study explores whether hyaluronic acid (HA) of different molecular weights and collagen, given their role in tendon extracellular matrix maintenance, have a synergistic effect on human tendon-derived cells, with the aim to improve the treatment of tendinopathy.
Material: Human monocytes (CRL-9855™) and primary Achilles tendon-derived cells.
Treatment: The collagen/HA ratio was based on the formulation of the commercial food supplement TendoGenIAL™.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!