The occurrence of disinfection by-products (DBPs) was investigated in 48 drinking water systems across Croatia. Eleven DBPs were studied: chlorite (ClO), chlorate (ClO), four trihalomethanes (THMs), and five haloacetic acids (HAAs). Furthermore, an intensive sampling program was conducted in the distribution system in the city of Zagreb where, aside from DBP analyses, natural organic matter (NOM) was characterized using fluorescence spectroscopy. In the drinking waters examined across Croatia, DBP values were found in the range from 0.7 μg/L to 32.8 μg/L for THMs, below LOQ to 17.2 μg/L for HAAs (primarily di- and trichloroacetic acids), below LOQ to 720 μg/L for ClO and below LOQ to 431 μg/L for ClO. The results obtained showed higher chlorite concentrations in the systems treated with hypochlorite compared to systems treated with chlorine dioxide. DBPs in the Zagreb distribution network were generally low (the average values were below 6 μg/L and 2 μg/L for total THM and total HAA respectively). In contrast to our observations throughout Croatia, dibromoacetic acid (DBAA) was found to be the predominant HAA within Zagreb, most likely due to the degradation of chlorinated carboxylates (di-/tri-chloroacetic) in the network. Characterization of NOM by Parallel Factor Analysis (PARAFAC) fluorescence spectroscopy across the Zagreb network showed distinct temporal variations arising from groundwater inputs, as evident from variable humic-, tyrosine-, and tryptophan-like peaks. Statistical correlations between fluorescence data and DBPs highlight its potential for monitoring the presence of DBPs in distribution networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.111360 | DOI Listing |
Toxics
January 2025
School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College, Soochow University, Suzhou 215123, China.
The control of waterborne diseases through water disinfection is a significant advancement in public health. However, the disinfection process generates disinfection by-products (DBPs), including trihalomethanes (THMs), which are considered to influence the occurrence of cancer. This analysis aims to quantitatively evaluate the relationship between blood concentrations of THMs and cancer.
View Article and Find Full Text PDFEnviron Health Perspect
January 2025
Barcelona Institute for Global Health, Barcelona, Spain.
Environ Health Perspect
January 2025
Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
Background: Chlorination is a widespread method for drinking water disinfection that has the drawback of introducing potentially carcinogenic chemical by-products to drinking water.
Objective: We systematically evaluated the epidemiologic evidence of exposure to trihalomethane (THM) disinfection by-products and risk of cancer.
Methods: We conducted a systematic review and meta-analysis of epidemiologic studies that assessed the association of exposure to residential concentrations of THMs with risk of cancer in adults.
Front Physiol
January 2025
Department of Sport Medicine and Traumatology, Poznan Univeristy of Physical Education, Poznań, Poland.
Swimming produces many psychophysiological effects, including blood, hormonal, enzymatic, pulmonary, cardiovascular and energetic adaptations. However, asthma and allergies are becoming increasingly prevalent medical issues among elite endurance-trained swimmers, where exercise-induced asthma or bronchospasm is frequently reported. Heavy endurance swimming training, especially under adverse conditions, stresses the airway mucosa, leading to inflammatory changes, as observed in induced sputum in competitive swimmers.
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou, 510000, China.
OH-mediated advanced oxidation processes (AOPs) are widely used in wastewater treatment and drinking water purification. Recently, an increasing number of studies have indicated that common inorganic nitrogen ions can efficiently generate •OH under UV irradiation, demonstrating strong performance in the degradation of various contaminants. Conversely, the presence of inorganic nitrogen ions in UV or other oxidation processes dramatically increases the yield of toxic nitro (so)-aromatic products and the formation potential of nitrogenous disinfection by-products with high genotoxicity and cytotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!