Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Triazolo[4,5-d]pyrimidin-5-amines were identified from kinase selectivity screening as novel ERK3 inhibitors with sub-100 nanomolar potencies in a biochemical assay using MK5 as substrate and with an attractive kinase selectivity profile. ERK3 crystal structures clarified the inhibitor binding mode in the ATP pocket with impact on A-loop, GC-loop and αC-helix conformations suggesting a potential structural link towards MK5 interaction via the FHIEDE motif. The inhibitors also showed sub-100 nM potencies in a cellular ERK3 NanoBRET assay and with excellent correlation to the biochemical ICs. This novel series provides valuable tool compounds to further investigate the biological function and activation mechanism of ERK3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2020.127551 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!