AI Article Synopsis

  • Haemophilia is an X-linked genetic disorder categorized mainly into types A and B, arising from the deficiency of proteins VIII and IX, with severity influenced by genetic mutations.
  • A new study utilized Position-Specific Mutation (PSM) and One-Hot Encoding (OHE) techniques on a dataset of 7784 mutations to predict the severity of Haemophilia 'A'.
  • The results indicated that PSM significantly outperformed OHE in both accuracy and efficiency, showing improvements in training/prediction time by up to 98% and enhanced prediction accuracy across various machine learning algorithms.

Article Abstract

Haemophilia is an X-linked genetic disorder in which A and B types are the most common that occur due to absence or lack of protein factors VIII and IX, respectively. Severity of the disease depends on mutation. Available Machine Learning (ML) methods that predict the mutational severity by using traditional encoding approaches, generally have high time complexity and compromised accuracy. In this study, Haemophilia 'A' patient mutation dataset containing 7784 mutations was processed by the proposed Position-Specific Mutation (PSM) and One-Hot Encoding (OHE) technique to predict the disease severity. The dataset processed by PSM and OHE methods was analyzed and trained for classification of mutation severity level using various ML algorithms. Surprisingly, PSM outperformed OHE, both in terms of time efficiency and accuracy, with training and prediction time improvement in the range of approximately 91 to 98% and 80 to 99% respectively. The severity prediction accuracy also improved by using PSM with different ML algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2020.09.020DOI Listing

Publication Analysis

Top Keywords

machine learning
8
position-specific mutation
8
disease severity
8
severity prediction
8
haemophilia 'a'
8
severity
6
mutation
5
learning method
4
method position-specific
4
mutation based
4

Similar Publications

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.

View Article and Find Full Text PDF

Effect of terahertz radiation on cells and cellular structures.

Front Optoelectron

January 2025

Institute of Physics, Saratov State University, Saratov, 410012, Russia.

The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes.

View Article and Find Full Text PDF

Cognitive resilience (CR) describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer's disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model's residuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!