Dendrite-targeting somatostatin-expressing interneurons (SST-INs) powerfully control signal integration and synaptic plasticity in pyramidal dendrites during cortical development. We previously showed that synaptic transmission from SST-INs to pyramidal cells (PCs) (SST-IN → PC) in the mouse visual cortex suddenly declined at around the second postnatal week. However, it is unclear what specific postsynaptic mechanisms underlie this developmental change. Using multiple whole-cell patch-clamp recordings, we found that application of an α5-GABA receptor-selective inverse agonist, alpha5IA, significantly weakened SST-IN → PC unitary inhibitory postsynaptic currents (uIPSCs) in layer 2/3 of the mouse visual cortex, but had no effect on uIPSCs from SST-INs to other types of interneurons. The extent of alpha5IA-induced reduction of SST-IN → PC synaptic transmission was significantly larger at postnatal days 11-13 (P11-13) than P14-17. Moreover, α5-subunit-containing GABA receptors (α5-GABARs)-mediated uIPSCs had slow rise and decay kinetics. Apart from pharmacological test, we observed that SST-IN → PC synapses did indeed contain α5-GABARs by immunogold labeling for electron microscopy. More importantly, coinciding with the weakening of SST-IN → PC synaptic transmission, the number of α5-GABAR particles in SST-IN → PC synapses significantly decreased at around the second postnatal week. Together, these data indicate that α5-GABARs are involved in synaptic transmission from SST-INs to PCs in the neocortex, and are significantly diminished around the second postnatal week.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2020.09.008 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720.
Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).
View Article and Find Full Text PDFCell Biosci
January 2025
State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.
Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.
View Article and Find Full Text PDFNeuroimage
January 2025
Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR 999078, China. Electronic address:
Individuals in the prodromal phase of Parkinson's disease (PD) exhibit significant heterogeneity and can be divided into distinct subtypes based on clinical symptoms, pathological mechanisms, and brain network patterns. However, little has been done regarding the valid subtyping of prodromal PD, which hinders the early diagnosis of PD. Therefore, we aimed to identify the subtypes of prodromal PD using the brain radiomics-based network and examine the unique patterns linked to the clinical presentations of each subtype.
View Article and Find Full Text PDFPflugers Arch
January 2025
Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.
Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
Two-pore-domain potassium channels (K2P) family is widely expressed in many human cell types and organs, which has important regulatory effect on physiological processes. K2P is sensitive to a variety of chemical and physical stimuli, and they have also been critically implicated in transmission of neural signal, ion homeostasis, cell development and death, and synaptic plasticity. Aberrant expression and dysfunction of K2P channels are involved in a range of diseases, including autoimmune, central nervous system, cardiovascular disease and others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!