It is still a great challenge to achieve high selectivity of CH in CO electroreduction reactions (CO RR) because of the similar reduction potentials of possible products and the sluggish kinetics for CO activation. Stabilizing key reaction intermediates by single type of active sites supported on porous conductive material is crucial to achieve high selectivity for single product such as CH . Here, Cu O(111) quantum dots with an average size of 3.5 nm are in situ synthesized on a porous conductive copper-based metal-organic framework (CuHHTP), exhibiting high selectivity of 73 % towards CH with partial current density of 10.8 mA cm at -1.4 V vs. RHE (reversible hydrogen electrode) in CO RR. Operando infrared spectroscopy and DFT calculations reveal that the key intermediates (such as *CH O and *OCH ) involved in the pathway of CH formation are stabilized by the single active Cu O(111) and hydrogen bonding, thus generating CH instead of CO.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202010601DOI Listing

Publication Analysis

Top Keywords

high selectivity
12
stabilizing key
8
key intermediates
8
hydrogen bonding
8
achieve high
8
porous conductive
8
highly selective
4
selective electroreduction
4
electroreduction in situ
4
in situ generated
4

Similar Publications

Background: Tissue-based genomic classifiers (GCs) have been developed to improve prostate cancer (PCa) risk assessment and treatment recommendations.

Purpose: To summarize the impact of the Decipher, Oncotype DX Genomic Prostate Score (GPS), and Prolaris GCs on risk stratification and patient-clinician decisions on treatment choice among patients with localized PCa considering first-line treatment.

Data Sources: MEDLINE, EMBASE, and Web of Science published from January 2010 to August 2024.

View Article and Find Full Text PDF

Chemerin is a new sex-specific target in aortic stenosis concomitant with diabetes regulated by the aldosterone/mineralocorticoid receptor axis.

Am J Physiol Heart Circ Physiol

January 2025

Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.

Diabetes mellitus (DM) increases the risk of aortic stenosis (AS) and worsens its pathophysiology in a sex-specific manner. Aldosterone/mineralocorticoid receptor (Aldo/MR) pathway participates in early stages of AS and in other diabetic-related cardiovascular complications. We aim to identify new sex-specific Aldo/MR targets in AS complicated with DM.

View Article and Find Full Text PDF

Characterization of Tumor Antigens from Multi-omics Data: Computational Approaches and Resources.

Genomics Proteomics Bioinformatics

January 2025

Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.

Tumor-specific antigens, also known as neoantigens, have potential utility in anti-cancer immunotherapy, including immune checkpoint blockade (ICB), neoantigen-specific T cell receptor-engineered T (TCR-T), chimeric antigen receptor T (CAR-T), and therapeutic cancer vaccines (TCVs). After recognizing presented neoantigens, the immune system becomes activated and triggers the death of tumor cells. Neoantigens may be derived from multiple origins, including somatic mutations (single nucleotide variants, insertion/deletions, and gene fusions), circular RNAs, alternative splicing, RNA editing, and polymorphic microbiome.

View Article and Find Full Text PDF

Objective: To assess the efficacy and safety of cefiderocol (CFDC) in the treatment of Gram-negative bacteria (GNB) infections.

Methods: Relevant studies were collected from PubMed, Web of Science, Cochrane, and Embase databases, from inception to 15 October 2023. The search formula was as follow: "cefiderocol", "S-649266", "Gram-Negative Bacteria", "Gram Negative Bacteria", "Klebsiella pneumoniae", "Hyalococcus pneumoniae", and "Bacterium pneumoniae proposal".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!