error estimation for the non-self-consistent Kohn-Sham equations.

Faraday Discuss

CERMICS, Ecole des Ponts and Inria Paris, 6 & 8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France.

Published: December 2020

We address the problem of rigorously bounding the errors in the numerical solution of the Kohn-Sham equations due to (i) the finiteness of the basis set, (ii) the convergence thresholds in iterative procedures, and (iii) the propagation of rounding errors in floating-point arithmetic. In this contribution, we compute fully-guaranteed bounds on the solution of the non-self-consistent equations in the pseudopotential approximation in a plane-wave basis set. We demonstrate our methodology by providing band structure diagrams of silicon annotated with error bars indicating the combined error.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0fd00048eDOI Listing

Publication Analysis

Top Keywords

kohn-sham equations
8
basis set
8
error estimation
4
estimation non-self-consistent
4
non-self-consistent kohn-sham
4
equations address
4
address problem
4
problem rigorously
4
rigorously bounding
4
bounding errors
4

Similar Publications

Attosecond Probing of Coherent Vibrational Dynamics in CBr.

J Phys Chem A

October 2024

Department of Chemistry, University of California, Berkeley, California 94720, United States.

A coherent vibrational wavepacket is launched and manipulated in the symmetric stretch (a) mode of CBr, by impulsive stimulated Raman scattering (ISRS) from nonresonant 400 nm laser pump pulses with various peak intensities on the order of tens of 10 W/cm. Extreme ultraviolet (XUV) attosecond transient absorption spectroscopy (ATAS) records the wavepacket dynamics as temporal oscillations in XUV absorption energy at the bromine M 3d edges around 70 eV. The results are augmented by nuclear time-dependent Schrödinger equation simulations.

View Article and Find Full Text PDF

It is a well-established standard to describe ground-state chemical reactions at an ab initio level of multi-electron theory. Fast reactions can be directly simulated. The most widely used approach is density functional theory for the electronic structure in combination with molecular dynamics for the nuclear motion.

View Article and Find Full Text PDF

To expand the QUEST database of highly accurate vertical transition energies, we consider a series of large organic chromogens ubiquitous in dye chemistry, such as anthraquinone, azobenzene, BODIPY, and naphthalimide. We compute, at the CC3 level of theory, the singlet and triplet vertical transition energies associated with the low-lying excited states. This leads to a collection of more than 120 new highly accurate excitation energies.

View Article and Find Full Text PDF

The electron-nucleus hyperfine coupling constant is a challenging property for density functional methods. For accurate results, hybrid functionals with a large amount of exact exchange are often needed and there is no clear "one-for-all" functional which describes the hyperfine coupling interaction for a large set of nuclei. To alleviate this unfavorable situation, we apply the adiabatic connection random phase approximation (RPA) in its post-Kohn-Sham fashion to this property as a first test.

View Article and Find Full Text PDF

Charge transfer interaction revisited by a Fermi-Dirac derived approach.

J Mol Model

August 2024

IC2MP UMR 7285, Université de Poitiers - CNRS, 4, Rue Michel Brunet, TSA 51106-86073 Cedex 9, Poitiers, France.

Context: In this article, we adapt a recent proposition to use a Fermi-Dirac-type population scheme on Kohn-Sham molecular orbitals to the case of an interaction with a thermalised electrode. This allows to derive a fundamental non-linear equation linking the chemical potential of the electrode and the amount of charge transferred to the system under study, hence allows to quantify the propensity to charge transfer (philicity). This methodology is applied to a large set of common electrophiles and nucleophiles, showing decent relation with more standard philicity descriptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!