Similar Publications

Article Synopsis
  • Ribonucleoprotein (RNP) condensates create distinct liquid phases that make it hard to study their functions versus the surrounding environment.
  • Researchers implemented fluorescence lifetime imaging microscopy (FLIM) alongside phasor plot filtering to better differentiate these condensates and assess protein interactions using FLIM-Förster resonance energy transfer (FRET).
  • They found that interactions among decapping complex subunits in P-bodies change based on conditions, particularly observing altered interactions during oxidative stress, highlighting the dynamic nature of these protein networks in live cells.
View Article and Find Full Text PDF

Myosin II tension sensors visualize force generation within the actin cytoskeleton in living cells.

J Cell Sci

October 2024

Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA.

Article Synopsis
  • Nonmuscle myosin II (NMII) is crucial for various cellular activities, including cell division and muscle contraction, but measuring the forces it generates in live cells has been challenging.
  • A new FRET-based tension sensor has been developed to directly measure the forces associated with NMII along the actin network, using advanced imaging techniques like FLIM-FRET.
  • The findings reveal that the forces produced by NMII isoform B (NMIIB) can vary significantly in different locations and times within the cell, suggesting this sensor could help understand the dynamics of cytoskeletal contractility in various cellular processes.
View Article and Find Full Text PDF

Our understanding of heterochromatin nanostructure and its capacity to mediate gene silencing in a living cell has been prevented by the diffraction limit of optical microscopy. Thus, here to overcome this technical hurdle, and directly measure the nucleosome arrangement that underpins this dense chromatin state, we coupled fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between histones core to the nucleosome, with molecular editing of heterochromatin protein 1 alpha (HP1α). Intriguingly, this super-resolved readout of nanoscale chromatin structure, alongside fluorescence fluctuation spectroscopy (FFS) and FLIM-FRET analysis of HP1α protein-protein interaction, revealed nucleosome arrangement to be differentially regulated by HP1α oligomeric state.

View Article and Find Full Text PDF

Fluorescence resonance energy transfer (FRET) biosensors have proven to be an indispensable tool in cell biology and, more specifically, in the study of G-protein signalling. The best method of measuring the activation status or FRET state of a biosensor is often fluorescence lifetime imaging microscopy (FLIM), as it does away with many disadvantages inherent to fluorescence intensity-based methods and is easily quantitated. Despite the significant potential, there is a lack of reliable FLIM-FRET biosensors, and the data processing and analysis workflows reported previously face reproducibility challenges.

View Article and Find Full Text PDF

Environmental stressors disrupt secretory protein folding and proteostasis in the endoplasmic reticulum (ER), leading to ER stress. The unfolded protein response (UPR) senses ER stress and restores proteostasis by increasing the expression of ER-resident protein folding chaperones, such as protein disulfide isomerases (PDIs). In plants, the transmembrane ER stress sensor kinase, IRE1, activates the UPR by unconventionally splicing the mRNA encoding the bZIP60 transcription factor, triggering UPR gene transcription.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!