In a stunningly short period of time, the unexpected coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has turned the unprepared world topsy-turvy. Although the rapidity with which the virus struck was indeed overwhelming, scientists throughout the world have been up to the task of deciphering the mechanisms by which SARS-CoV-2 induces the multisystem and multiorgan inflammatory responses that, collectively, contribute to the high mortality rate in affected individuals. In this issue of the JCI, Skendros and Mitsios et al. is one such team who report that the complement system plays a substantial role in creating the hyperinflammation and thrombotic microangiopathy that appear to contribute to the severity of COVID-19. In support of the hypothesis that the complement system along with neutrophils and platelets contributes to COVID-19, the authors present empirical evidence showing that treatment with the complement inhibitor compstatin Cp40 inhibited the expression of tissue factor in neutrophils. These results confirm that the complement axis plays a critical role and suggest that targeted therapy using complement inhibitors is a potential therapeutic option to treat COVID-19-induced inflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598033 | PMC |
http://dx.doi.org/10.1172/JCI142780 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!