AI Article Synopsis

  • The study aimed to assess how texture analysis of MRI images can help evaluate Gleason scores (GS) in prostate cancer patients.
  • It involved 66 prostate cancer patients, categorized into five GS groups, using texture software to extract and analyze imaging features.
  • Results showed that specific texture metrics (entropy and energy) significantly correlate with GS, enhancing diagnostic accuracy when combined rather than used separately.

Article Abstract

Objective: To investigate the value of texture analysis in magnetic resonance images for the evaluation of Gleason scores (GS) of prostate cancer.

Methods: Sixty-six prostate cancer patients are retrospective enrolled, which are divided into five groups namely, GS = 6, 3 + 4, 4 + 3, 8 and 9-10 according to postoperative pathological results. Extraction and analysis of texture features in T2-weighted MR imaging defined tumor region based on pathological specimen after operation are performed by texture software OmniKinetics. The values of texture are analyzed by single factor analysis of variance (ANOVA), and Spearman correlation analysis is used to study the correlation between the value of texture and Gleason classification. Receiver operating characteristic (ROC) curve is then used to assess the ability of applying texture parameters to predict Gleason score of prostate cancer.

Results: Entropy value increases and energy value decreases as the elevation of Gleason score, both with statistical difference among five groups (F = 10.826, F = 2.796, P < 0.05). Energy value of group GS = 6 is significantly higher than that of groups GS = 8 and 9-10 (P < 0.005), which is similar between three groups (GS = 3 + 4, 8 and 9-10). The entropy and energy values correlate with GS (r = 0.767, r = -0.692, P < 0.05). Areas under ROC curves (AUC) of combination of entropy and energy are greater than that of using energy alone between groups GS = 6 and ≥7. Analogously, AUC of combination of entropy and energy are significantly higher than that of using entropy alone between groups GS≤3 + 4 and ≥4 + 3, as well as between groups GS≤4 + 3 and ≥8.

Conclusion: Texture analysis on T2-weighted images of prostate cancer can evaluate Gleason score, especially using the combination of entropy and energy rendering better diagnostic efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.3233/XST-200695DOI Listing

Publication Analysis

Top Keywords

texture analysis
8
magnetic resonance
8
resonance images
8
gleason scores
8
scores prostate
8
prostate cancer
8
gleason score
8
texture
6
analysis
5
gleason
5

Similar Publications

Texture is a significant component used for several applications in content-based image retrieval. Any texture classification method aims to map an anonymously textured input image to one of the existing texture classes. Extensive ranges of methods for labeling image texture were proposed earlier.

View Article and Find Full Text PDF

Background: Fruit quality traits, including taste, flavor, texture, and shelf-life, have emerged as important breeding priorities in blueberry (Vaccinium corymbosum). Organic acids and sugars play crucial roles in the perception of blueberry taste/flavor, where low and high consumer liking are correlated with high organic acids and high sugars, respectively. Blueberry texture and appearance are also critical for shelf-life quality and consumers' willingness-to-pay.

View Article and Find Full Text PDF

Automated tools for quantification of idiopathic pulmonary fibrosis (IPF) can aid in ensuring reproducibility, however their complexity and costs can differ substantially. In this retrospective study, two automated tools were compared in 45 patients with biopsy proven (12/45) and imaging-based (33/45) IPF diagnosis (mean age 74 ± 9 years, 37 male) for quantification of pulmonary fibrosis in CT. First, a tool that identifies multiple characteristic lung texture features was applied to measure multi-texture fibrotic lung (MTFL) by combining the amount of ground glass, reticulation, and honeycombing.

View Article and Find Full Text PDF

Prediction of the toughness of date palm fruit.

Sci Rep

January 2025

Department of Water Relations and Field Irrigation, Agricultural and Biological Research institute, National Research Centre, Giza, Egypt.

This study aimed to predict the toughness of date palm fruit (Barhi, Saqie, and Khodry varieties) at different ripening stages (Khalal, Rutab, and Tamar) using Hertz Theory by evaluating the physical and mechanical characteristics of the fruits. Physical measurements revealed that high moisture content in the Khalal stage led to larger dimensions and mass across all varieties, with Barhi dates showing a moisture content of 63.31%, which decreased to 32.

View Article and Find Full Text PDF

Magnetic vortex: Fundamental physics, developments, and device applications.

J Phys Condens Matter

January 2025

Institute of Engineering & Management, Department of Basic Science and Humanities, Institute of Engineering & Management, Salt Lake Electronics Complex, Sector V, Salt Lake, Kolkata 700091, India, University of Engineering & Management, University Area, Plot No. III, B/5, New Town Road, Action Area III, Newtown, Kolkata 700160, India, Calcutta, West Bengal, 700091, INDIA.

A magnetic vortex (MV) is one of the fundamental and topologically nontrivial spin textures in condensed matter physics. Magnetic vortices are usually the ground states in geometrically restricted ferromagnets with zero magnetocrystalline anisotropy. Magnetic vortices have recently been proposed for use in a variety of spintronics applications due to their resistance to thermal perturbations, flexibility in changing core polarity, simple patterning procedure, and potential uses in magnetic data storage with substantial density, sensors for the magnetic field, devices for logic operations, and other related fields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!