Traumatic Injury Reduces Amyloid Plaque Burden in the Transgenic 5xFAD Alzheimer's Mouse Spinal Cord.

J Alzheimers Dis

Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

Published: September 2021

Background: Axonal injury has been implicated in the development of amyloid-β in experimental brain injuries and clinical cases. The anatomy of the spinal cord provides a tractable model for examining the effects of trauma on amyloid deposition.

Objective: Our goal was to examine the effects of axonal injury on plaque formation and clearance using wild type and 5xFAD transgenic Alzheimer's disease mice.

Methods: We contused the spinal cord at the T12 spinal level at 10 weeks, an age at which no amyloid plaques spontaneously accumulate in 5xFAD mice. We then explored plaque clearance by impacting spinal cords in 27-week-old 5xFAD mice where amyloid deposition is already well established. We also examined the cellular expression of one of the most prominent amyloid-β degradation enzymes, neprilysin, at the lesion site.

Results: No plaques were found in wild type animals at any time points examined. Injury in 5xFAD prevented plaque deposition rostral and caudal to the lesion when the cords were examined at 2 and 4 months after the impact, whereas age-matched naïve 5xFAD mice showed extensive amyloid plaque deposition. A massive reduction in the number of plaques around the lesion was found as early as 7 days after the impact, preceded by neprilysin upregulation in astrocytes at 3 days after injury. At 7 days after injury, the majority of amyloid was found inside microglia/macrophages.

Conclusion: These observations suggest that the efficient amyloid clearance after injury in the cord may be driven by the orchestrated efforts of astroglial and immune cells.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-200387DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
5xfad mice
12
amyloid plaque
8
axonal injury
8
wild type
8
plaque deposition
8
days injury
8
amyloid
7
5xfad
6
injury
6

Similar Publications

Unraveling the genetic mysteries of spinal muscular atrophy in Chinese families.

Orphanet J Rare Dis

January 2025

The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.

Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.

Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.

View Article and Find Full Text PDF

Size effect-based improved antioxidant activity of selenium nanoparticles regulating Anti-PI3K-mTOR and Ras-MEK pathways for treating spinal cord injury to avoid hormone shock-induced immunosuppression.

J Nanobiotechnology

January 2025

Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.

Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).

View Article and Find Full Text PDF

Study Design: Registry-based cohort study.

Objectives: To evaluate the impact of the introduction of a new bladder management model of care at the Victorian Spinal Cord Service (VSCS) on the incidence of subsequent emergency department presentations and readmissions to hospital for urinary tract infection (UTI) in the first 2 years after injury.

Setting: VSCS, Austin Health, Melbourne, Australia.

View Article and Find Full Text PDF

Integrated bioinformatics analysis identified cuproptosis-related hub gene Mpeg1 as potential biomarker in spinal cord injury.

Sci Rep

January 2025

Department of Neurosurgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.

Spinal cord injury (SCI) is a profound ailment lacking a well-defined molecular mechanism and effective treatments. Cuproptosis, identified as a recently discovered cell death pathway, exhibits diverse roles in various cancers. Nevertheless, its involvement in SCI is yet to be elucidated.

View Article and Find Full Text PDF

Machine learning analysis of cervical balance in early-onset scoliosis post-growing rod surgery: a case-control study.

Sci Rep

January 2025

Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chaoyang District, Beijing, 100020, China.

We aimed to analyze the cervical sagittal alignment change following the growing rod treatment in early-onset scoliosis (EOS) and identify the risk factors of sagittal cervical imbalance after growing-rod surgery of machine learning. EOS patients from our centre between 2007 and 2019 were retrospectively reviewed. Radiographic parameters include the cervical lordosis (CL), T1 slope, C2-C7 sagittal vertical axis (C2-7 SVA), primary curve Cobb angle, thoracic kyphosis (TK), C7-S1 sagittal vertical axis (C7-S1 SVA) and proximal junctional angle (PJA) were evaluated preoperatively, postoperatively and at the final follow-up.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!