Adaptive respiratory signal prediction using dual multi-layer perceptron neural networks.

Phys Med Biol

Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, People's Republic of China. Department of Radiation Oncology, Duke University Cancer Center, Durham, NC 27710, United States of America.

Published: September 2020

To improve the prediction accuracy of respiratory signals by adapting the multi-layer perceptron neural network (MLP-NN) model to changing respiratory signals. We have previously developed an MLP-NN to predict respiratory signals obtained from a real-time position management (RPM) device. Preliminary testing results indicated that poor prediction accuracy may be observed after several seconds for irregular breathing patterns as only a set of fixed data was used in one-time training. To improve the prediction accuracy, we introduced a continuous learning technique using the updated training data to replace one-time learning using the fixed training data. We carried on this new prediction using an adaptation approach with dual MLP-NNs rather than single MLP-NN. When one MLP-NN was performing prediction of the respiratory signals, another one was being trained using the updated data and vice versa. The predicted performance was evaluated by root-mean-square-error (RMSE) between the predicted and true signals from 202 patients' respiratory patterns each with 1 min recording length. The effects of adding an additional network, training parameter, and respiratory signal irregularity on the performance of the new predictor were investigated based on four different network configurations: a single MLP-NN, high-computation dual MLP-NNs (U1), two different combinations of high- and low-computation dual MLP-NNs (U2 and U3). The RMSEs using U1 method were reduced by 34%, 19%, and 10% compared to those using MLP-NN, U2 and U3 methods, respectively. Continuous training of an MLP-NN based on a dual-network configuration using updated respiratory signals improved prediction accuracy compared to one-time training of an MLP-NN using fixed signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670491PMC
http://dx.doi.org/10.1088/1361-6560/abb170DOI Listing

Publication Analysis

Top Keywords

respiratory signals
20
prediction accuracy
16
dual mlp-nns
12
respiratory signal
8
multi-layer perceptron
8
perceptron neural
8
improve prediction
8
mlp-nn
8
one-time training
8
training data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!