Background: Patients with hyperglycemia during hospitalization, especially during ICU hospitalizations, often have worse outcomes, even if they do not have a premorbid diagnosis of diabetes. High glucose levels can provide insight into the underlying pathogenesis of a disease and can contribute to tissue injury. Some patients with COVID-19 have hyperglycemia during hospitalizations.
Methods: The Infectious Disease and Control office at University Medical Center in Lubbock, Texas, provided a list of patients with a COVID-19 infection hospitalized between March 1 and May 15, 2020. The medical records were reviewed to collect information on age, gender, history of diabetes, and glucose levels on admission and through the first 7 days of hospitalization.
Results: This study included 63 patients with a mean age of 62.1 ± 14.1 years. Thirty-five patients (55.6%) were males. The in-hospital mortality rate was 30.2%. The mean admission glucose level was 129.4 ± 57.1 mg/dL in patients who survived (N = 47) and 189.6 ± 112.2 mg/dL in patients who died during hospitalization (N = 16, = .007). An admission glucose greater than 180 mg/dL predicted mortality in a model adjusted for a diabetes, age, and male gender. The mean differences between the maximum and minimum glucose levels calculated over the first 7 days of hospitalization were 112.93 ± 115.4 (N = 47) in patients who survived and were 240.5 ± 97.7 (N = 15) in patients who died during hospitalization ( = .0003). A difference between the maximum and minimum glucose level greater than 105 mg/dL was associated with increased mortality.
Conclusions: Patients who died during hospitalization for COVID-19 had higher admission glucose levels than patients who survived. Larger differences between maximum and minimum glucose levels during the first 7 days of hospitalization were associated with increased mortality. These results suggest that high glucose levels identify patients at increased risk for mortality and warrant more study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7493238 | PMC |
http://dx.doi.org/10.1177/2150132720958533 | DOI Listing |
Diabetes Care
January 2025
Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL.
Objective: Subtypes of gestational diabetes mellitus (GDM) based on insulin sensitivity and secretion have been described. We addressed the hypothesis that GDM subtypes are differentially associated with newborn and child anthropometric and glycemic outcomes.
Research Design And Methods: Newborn and child (age 11-14 years) outcomes were examined in 7,970 and 4,160 mother-offspring dyads, respectively, who participated in the Hyperglycemia and Adverse Pregnancy Outcome Study (HAPO) and Follow-Up Study.
J Clin Invest
January 2025
Department of Cell Systems and Anatomy, UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, San Antonio, United States of America.
Hematopoietic stem cells (HSCs) rely on self-renewal to sustain stem cell potential and undergo differentiation to generate mature blood cells. Mitochondrial fatty acid β-oxidation (FAO) is essential for HSC maintenance. However, the role of Carnitine palmitoyl transferase 1a (CPT1A), a key enzyme in FAO, remains unclear in HSCs.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
HealthPartners Institute, Bloomington, Minnesota.
Importance: Medication adherence is important for managing blood pressure (BP), low-density lipoprotein cholesterol (LDL-C), and hemoglobin A1c (HbA1c). Interventions to improve medication adherence are needed.
Objective: To examine the effectiveness of an intervention using algorithmic identification of low medication adherence, clinical decision support to physicians, and pharmacist outreach to patients to improve cardiometabolic medication adherence and BP, LDL-C, and HbA1c control.
J Endocrinol Invest
January 2025
Department of Endocrinology, Nanshi Hospital of Nanyang, No. 130, West Zhongzhou Road, Nanyang, 473065, China.
Background: Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and has the complex pathogenesis. The previous study reported that protein kinase Bγ (AKT3) was involved in DN progression. Our aim was to explore the detailed mechanisms of AKT3 in DN development.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Laboratory of Immunoendocrinology Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St, 31-343, Kraków, Poland.
Oxidative stress and neuroinflammation play a pivotal role in pathomechanisms of brain ischemia. Our research aimed to formulate a nanotheranostic system for delivering carnosic acid as a neuroprotective agent with anti-oxidative and anti-inflammatory properties to ischemic brain tissue, mimicked by organotypic hippocampal cultures (OHCs) exposed to oxygen-glucose deprivation (OGD). In the first part of this study, the nanocarriers were formulated by encapsulating two types of nanocores (nanoemulsion (AOT) and polymeric (PCL)) containing CA into multilayer shells using the sequential adsorption of charged nanoobjects method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!