Wave-Function Symmetry Control of Electron-Transfer Pathways within a Charge-Transfer Chromophore.

J Phys Chem Lett

Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.

Published: October 2020

Despite a diverse manifold of excited states available, it is generally accepted that the photoinduced reactivity of charge-transfer chromophores involves only the lowest-energy excited state. Shining a visible-light laser pulse on an aqueous solution of the chromophore-quencher [Ru(tpy)(bpy)(μNC)Os(CN)] assembly (tpy = 2,2';6,2''-terpyridine and bpy = 2,2'-bipyridine), we prepared a mixture of two charge-transfer excited states with different wave-function symmetry. We were able to follow, in real time, how these states undergo separate electron-transfer reaction pathways. As a consequence, their lifetimes differ in 3 orders of magnitude. Implicit are energy barriers high enough to prevent internal conversion within early excited-state populations, shaping isolated electron-transfer channels in the excited-state potential energy surface. This is relevant not only for supramolecular donor/acceptor chemistry with restricted donor/acceptor relative orientations. These energy barriers provide a means to avoid chemical potential dissipation upon light absorption in any molecular energy conversion scheme, and our observations invite to explore wave-function symmetry-based strategies to engineer these barriers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c02167DOI Listing

Publication Analysis

Top Keywords

wave-function symmetry
8
excited states
8
energy barriers
8
symmetry control
4
control electron-transfer
4
electron-transfer pathways
4
pathways charge-transfer
4
charge-transfer chromophore
4
chromophore despite
4
despite diverse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!