Protein amorphous aggregation has become the focus of great attention, as it can impair the ability of cells to function properly. Here, we evaluated the effects of three peptide tags, consisting of one, three, and five consecutive isoleucines attached at the C-terminus end of a simplified bovine pancreatic trypsin inhibitor (BPTI) variant, BPTI-19A, on the thermal stability and oligomerization by circular dichroism spectrometry and differential scanning calorimetry in detail. All of the BPTI-19A variants exhibited a reversible and apparently two-state thermal transition like BPTI-19A at pH 4.7. The thermal transition of the five-isoleucine-tagged variant showed clear protein-concentration dependence, where the apparent denaturation temperature decreased as the protein concentration increased. Quantitative analysis indicated that this phenomenon originated from the presence of reversibly oligomerized (RO) states at high temperatures. The results also illustrated that the thermodynamic stability difference between the native and the monomeric denatured state in all the proteins was destabilized by the hydrophobic tags and was well explained by the reverse hydrophobic effect due to the tags. The existence of the RO states was confirmed by both analytical ultracentrifugation and dynamic light scattering. This indicated that the five-isoleucine hydrophobic tag is strong enough to induce intermolecular hydrophobic contact among the denatured molecules leading to oligomerization, and even one- or three-isoleucine tags are effective enough to generate intramolecular hydrophobic contact, thus provoking denaturation through the reverse hydrophobic effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.0c00436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!