Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two-dimensional (2D) Ruddlesden-Popper perovskites have been demonstrated to possess great potential for optical and optoelectronic devices. Because they exhibit better ambient stability than three-dimensional (3D) perovskites, they have been considered as potential substitutes for 3D perovskites as light absorbing layers to improve the photoresponsivity of monolayer transition metal dichalcogenide (TMDC)-based photodetectors. Investigation of the optoelectronic properties of TMDC monolayer/2D perovskite vertical heterostructures is however at an early stage. Here, we address the photovoltaic effect and the photodetection performance in tungsten disulfide (WS) monolayer/2D perovskite (CHCHNH)PbI (PEPI) vertical heterostructures. A vertical device geometry with separate graphene contacts to both heterointerface constituents acted as a photovoltaic device and self-driven photodetector. The photovoltaic device exhibited an open circuit voltage of -0.57 V and a short circuit current of 41.6 nA. A photoresponsivity of 0.13 mA/W at the WS/PEPI heterointerface was achieved, which was signified by a factor of 5 compared to that from the individual WS region. The current on/off ratio of the self-driven photodetector was approximately 1500. The photoresponsivity and external quantum efficiency of the self-driven photodetector were estimated to be 24.2 μA/W and 5.7 × 10, respectively. This work corroborates that 2D perovskites are promising light absorbing layers in optoelectronic devices with a TMDC-based heterointerface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c14398 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!