Eco-Efficient Green Seaweed Biosorbent for Textile Dyes: Characterization, Mechanism, Recyclability, and RSM Optimization.

ACS Omega

Laboratory of Aquatic Ecosystems: Marine and Continental (AQUAMAR), Faculty of Sciences, Ibn Zohr University, P. O. Box 8106, Dakhla, Agadir 80000, Morocco.

Published: September 2020

Biosorption using natural waste has emerged as a potential and promising strategy for removal of toxic dyes from wastewaters in comparison to conventional ones. Herein, the alga (CDA) was biologically identified and used as a biosorbent for anionic and cationic dyes from aqueous solutions. SEM analysis showed a rough surface with an irregular edge and shape while hydroxyl, amine, sulfur and carboxyl functional groups were identified using FTIR analysis. TGA/DTG confirmed the stability of CDA and the adsorption process. Batch studies were conducted to investigate the effect of operational factors such as initial pH, biosorbent dosage, temperature, initial concentration, and solid/liquid contact time on the biosorption of crystal violet (CV) and Congo red (CR) dyes. For both CV and CR dyes, the biosorption kinetics was accurately described by the pseudo-second-order model and the Langmuir isotherm was found to be best fitted for equilibrium data. Maximum uptake capacities have attained up to 278.46 mg/g for CV and 191.01 mg/g for CR. The CV and CR dye biosorption mechanism was ultimately manifested through the electrostatic interactions. The regeneration study showed that the CDA presents excellent reuse performance up to four consecutive cycles. The process optimization was performed using the response surface methodology based on Box-Behnken design (RSM-BDD). Accordingly, the optimum predicted removal efficiencies using RSM-BBD for CV and CR were obtained, respectively, at 96.9 and 89.8% using a CDA dose of 1.5 g/L, dye concentration of 20 mg/L, pH of 10 for CV, and pH of 4 for CR. Overall, CDA behaves as an efficient, recyclable, cheap, and eco-friendly adsorbent for cleaning-up of dyed effluents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482234PMC
http://dx.doi.org/10.1021/acsomega.0c02311DOI Listing

Publication Analysis

Top Keywords

dyes
5
cda
5
eco-efficient green
4
green seaweed
4
seaweed biosorbent
4
biosorbent textile
4
textile dyes
4
dyes characterization
4
characterization mechanism
4
mechanism recyclability
4

Similar Publications

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Luminescence Lifetime-Based Water Conductivity Sensing Using a Cationic Dextran-Supported Ru(II) Polypyridyl Complex.

Sensors (Basel)

December 2024

Chemical Optosensors & Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.

Water conductivity sensing relies universally on electrical measurements, which are subject to corrosion of the electrodes and subsequent signal drift in prolonged in situ uses. Furthermore, they cannot provide contactless sensing or remote readout. To this end, a novel device for water conductivity monitoring has been developed by employing a microenvironment-sensitive ruthenium complex, [Ru(2,2'-bipyridine-4,4'-disulfonato)], embedded into a quaternary ammonium functionalized cross-linked polymer support.

View Article and Find Full Text PDF

FITA-Containing 2,4-Dinitrophenyl Alkylthioether-Based Probe for Detection and Imaging of GSH.

Sensors (Basel)

December 2024

Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.

Glutathione (GSH) plays a crucial role in various physiological processes and its imbalances are closely related to various pathological conditions. Probes for detection and imaging of GSH are not only useful for understanding GSH chemical biology but are also important for exploring potential theranostic agents. Herein, we report a fast intramolecular thiol-activated arylselenoamides ()-based fluorescent probe using 2,4-dinitrophenyl alkylthioether as a sulfydryl-selective receptor for the first time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!