The lack of a scalable nanoparticle-based computing architecture severely limits the potential and use of nanoparticles for manipulating and processing information with molecular computing schemes. Inspired by the von Neumann architecture (VNA), in which multiple programs can be operated without restructuring the computer, we realized the nanoparticle-based VNA (NVNA) on a lipid chip for multiple executions of arbitrary molecular logic operations in the single chip without refabrication. In this system, nanoparticles on a lipid chip function as the hardware that features memory, processors, and output units, and DNA strands are used as the software to provide molecular instructions for the facile programming of logic circuits. NVNA enables a group of nanoparticles to form a feed-forward neural network, a perceptron, which implements functionally complete Boolean logic operations, and provides a programmable, resettable, scalable computing architecture and circuit board to form nanoparticle neural networks and make logical decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449691PMC
http://dx.doi.org/10.1126/sciadv.abb3348DOI Listing

Publication Analysis

Top Keywords

computing architecture
12
nanoparticle-based computing
8
nanoparticle neural
8
neural networks
8
lipid chip
8
logic operations
8
architecture
4
architecture nanoparticle
4
networks lack
4
lack scalable
4

Similar Publications

Electronic circular dichroism (ECD) spectra contain key information about molecular chirality by discriminating the absolute configurations of chiral molecules, which is crucial in asymmetric organic synthesis and the drug industry. However, existing predictive approaches lack the consideration of ECD spectra owing to the data scarcity and the limited interpretability to achieve trustworthy prediction. Here we establish a large-scale dataset for chiral molecular ECD spectra and propose ECDFormer for accurate and interpretable ECD spectrum prediction.

View Article and Find Full Text PDF

PFSH-Net: Parallel frequency-spatial hybrid network for segmentation of kidney stones in pre-contrast computed tomography images of dogs.

Comput Biol Med

January 2025

Division of Electronics and Information Engineering, College of Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, 54896, Jeonju, Republic of Korea. Electronic address:

Kidney stone is a common urological disease in dogs and can lead to serious complications such as pyelonephritis and kidney failure. However, manual diagnosis involves a lot of burdens on radiologists and may cause human errors due to fatigue. Automated methods using deep learning models have been explored to overcome this limitation.

View Article and Find Full Text PDF

For consideration of uncertainties of a medicine dataset, a new conceptual architecture fuzzy three-valued logic is introduced in this research work. The proposed concept is applied to the heart disease dataset for the assessment of heart disease risk in individuals. By comparison of three binary (0,1) input variables, the variables' uncertainties and their collective impact can be analyzed that provide complete information leading to better outcome prediction.

View Article and Find Full Text PDF

Lung cancer remains a significant health concern worldwide, prompting ongoing research efforts to enhance early detection and diagnosis. Prior studies have identified key challenges in existing approaches, including limitations in feature extraction, interpretability, and computational efficiency. In response, this study introduces a novel deep learning (DL) framework, termed the Improved CenterNet approach, tailored specifically for lung cancer detection.

View Article and Find Full Text PDF

Gastrointestinal tract-related cancers pose a significant health burden, with high mortality rates. In order to detect the anomalies of the gastrointestinal tract that may progress to cancer, a video capsule endoscopy procedure is employed. The number of video capsule endoscopic ( ) images produced per examination is enormous, which necessitates hours of analysis by clinicians.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!