Deep brain stimulation (DBS) is a rapidly evolving procedure with its application in multiple fields of neurology, but it is most prominent in Parkinson's disease (PD). Through electrode implantation in different areas of the brain, it brings a favorable change to the motor symptoms to the magnitude that none of the medications have been able to, but the effect on cognition of the patients is still unknown. We did a comprehensive search through PubMed and Cochrane databases and conducted a systematic review by following the PRISMA guidelines. Inclusion criteria were studies conducted only in PD patients, after the year 2008. The studies published in languages other than English were excluded. Thirteen studies, including randomized and non-randomized controlled trials, observational studies, and meta-analysis, were analyzed in detail. The results showed a declining trend in verbal fluency and attention domains of cognition, while other functions remained unchanged. The decline was significant but not enough to impact the quality index in patients. DBS is associated with worse performance in verbal fluency and attention, and there is a further need for studies focusing on these domains with long-term follow-up. The overall cognitive profile was not affected significantly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7486084 | PMC |
http://dx.doi.org/10.7759/cureus.9688 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).
View Article and Find Full Text PDFSci Rep
January 2025
Gynecology Department Institute Clinic of Gynecology, Obstetrics and Neonatology, Hospital Clinic, Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, 08036, Barcelona, Spain.
Anhedonia, characterized by diminished motivation and pleasure sensitivity, is increasingly recognized as prevalent among patients with chronic pain. Deep Endometriosis (DE), the most severe endophenotype of the disease, is commonly presented with chronic pelvic pain. This cross-sectional study reports, for the first time, the prevalence of anhedonia in a sample comprised by 212 premenopausal women with suspected DE referred to a tertiary hospital.
View Article and Find Full Text PDFBrain Stimul
January 2025
Department of Biomedical Engineering, 36 S Wasatch Dr, Salt Lake City, 84112, UT, United States.
Emerging neurostimulation methods aim to selectively modulate deep brain structures. Guiding these therapies has presented a substantial chal- lenge, since imaging modalities such as MRI limit the spectrum of benefi- ciaries. In this study, we assess the guidance accuracy of a neuronavigation method that does not require taking MRI scans.
View Article and Find Full Text PDFNeuroscience
January 2025
School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, China; State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, China; National Demonstration Center for Experimental Mechanics Education, Xi'an Jiaotong University, Xi'an, China. Electronic address:
Schizophrenia (SCHZ), bipolar disorder (BD), and attention-deficit/hyperactivity disorder (ADHD) share clinical symptoms and risk genes, but the shared and distinct neural dynamic mechanisms remain inadequately understood. Degree is a fundamental and important graph measure in network neuroscience, and we here extended the degree to hierarchical levels based on eigenmodes and compared the resting-state brain networks of three disorders and healthy controls (HC). First, compared to HC, SCHZ and BD patients exhibited substantially overlapped abnormalities in brain networks, wherein BD patients displayed more significant alterations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!