Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Near infrared optical tomography (NIROT) is an emerging modality that enables imaging the oxygenation of tissue, which is a biomarker of tremendous clinical relevance. Measuring in reflectance is usually required when NIROT is applied in clinical scenarios. Single photon avalanche diode (SPAD) array technology provides a compact solution for time domain (TD) NIROT to gain huge temporal and spatial information. This makes it possible to image complex structures in tissue. The main aim of this paper is to validate the wavelength normalization method for our new TD NIROT experimentally by exposing it to a particularly difficult challenge: the recovery of two inclusions at different depths. The proposed reconstruction algorithm aims to tackle systematic errors and other artifacts with known wavelength-dependent relation. We validated the device and reconstruction method experimentally on a silicone phantom with two inclusions: one at depth of 10 mm and the other at 15 mm. Despite this tough challenge for reflectance NIROT, the system was able to localize both inclusions accurately.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449738 | PMC |
http://dx.doi.org/10.1364/BOE.398885 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!