With the advantages of completely controlling the phase, amplitude, and polarization in subwavelength range, metalenses have drawn intensive attentions in high resolution two-photon micro-endoscopic fluorescence imaging system. However, chromatic dispersion and severe scattering of biological tissue significantly reduce excitation-collection efficiency in the traditional two-photon imaging system based on traditional metalenses designed in the air background. Here, an excitation and emission dual-wavelength confocal and polarization-insensitive metalens designed in the biological tissue environment was proposed by adopting the composite embedding structure and spatial multiplexing approach. The metalens with numerical aperture (NA) of 0.895 can focus the excitation (915 nm) and emission (510 nm) beams to the same focal spot in the mouse cortex. According to the theoretical simulation of two-photon fluorescence imaging, the lateral resolution of the collected fluorescent spots via the proposed metalens can be up to 0.42 µm. Compared to the metalens designed in the air environment, the collection efficiency of fluorescent spot is improved from 5.92% to 14.60%. Our investigation has opened a new window of high resolution and minimally invasive imaging in deep regions of biological tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449710 | PMC |
http://dx.doi.org/10.1364/BOE.395539 | DOI Listing |
Sci Adv
January 2025
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.
Artificial nanostructures with ultrafine and deep-subwavelength features have emerged as a paradigm-shifting platform to advanced light-field management, becoming key building blocks for high-performance integrated optoelectronics and flat optics. However, direct optical inspection of integrated chips remains a missing metrology gap that hinders quick feedback between design and fabrications. Here, we demonstrate that photothermal nonlinear scattering microscopy can be used for direct imaging and resolving of integrated optoelectronic chips beyond the diffraction limit.
View Article and Find Full Text PDFComplete 2π cycling of a phase around a phase singularity leads to a rapid phase variation in the nearby zones and forms a sharp local -vector peak. In this paper, the intensity distribution in the spatial domain is transformed into a -vector distribution in the wave vector domain, and we prove that the local -vector peak is generated at the point of minimum light field intensity. The local -vector peak is sharper when the minimum point is closer to the phase singularity.
View Article and Find Full Text PDFThis study investigates the role of pitch size in achieving high numerical aperture (NA) and focusing efficiency in metalens design, while demonstrating how high refractive index materials contribute to performance enhancement by enabling smaller pitch sizes through reduced filling ratios. Silicon-rich nitride (SRN) was chosen as the material platform due to its high refractive index, CMOS compatibility, and cost-effective fabrication. Two SRN-based metalenses were designed: a geometric phase metalens (GPM) and a propagation phase metalens (PPM), each evaluated at aspect ratios of 10:1 and 4:1.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, The American University in Cairo, New Cairo, 11835, Egypt.
Inverse design with topology optimization considers a promising methodology for discovering new optimized photonic structure that enables to break the limitations of the forward or the traditional design especially for the meta-structure. This work presents a high efficiency mid infra-red imaging photonics element along mid infra-red wavelengths band starts from 2 to 5 µm based on silicon nitride optimized material structures. The first two designs are broadband focusing and reflective meta-lens under very high numerical aperture condition (NA = 0.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka Bangladesh
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!