To demonstrate how heart rate fragmentation gives novel insights into non-autonomic mechanisms of beat-to-beat variability in cycle length, and predicts survival of cardiology clinic patients, over and above traditional clinical risk factors and measures of heart rate variability. We studied 2893 patients seen by cardiologists with clinical data including 24-hour Holter monitoring. Novel measures of heart rate fragmentation alongside canonical time and frequency domain measures of heart rate variability, as well as an existing local dynamics score were calculated. A proportional hazards model was utilized to relate the results to survival. The novel heart rate fragmentation measures were validated and characterized with respect to the effects of age, ectopy and atrial fibrillation. Correlations between parameters were determined. Critically, heart rate fragmentation results could not be accounted for by undersampling respiratory sinus arrhythmia. Increased heart rate fragmentation was associated with poorer survival (p ≪ 0.01 in the univariate model). In multivariable analyses, increased heart rate fragmentation and more abnormal local dynamics (p 0.045), along with increased clinical risk factors (age (p ≪ 0.01), tobacco use (p ≪ 0.01) and history of heart failure (p 0.019)) and lower low- to high-frequency ratio (p 0.022) were all independent predictors of 2-year mortality. Analysis of continuous ECG data with heart rate fragmentation indices yields information regarding non-autonomic control of beat-to-beat variability in cycle length that is independent of and additive to established parameters for investigating heart rate variability, and predicts mortality in concert with measures of local dynamics, frequency content of heart rate, and clinical risk factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457638 | PMC |
http://dx.doi.org/10.1177/2048004020948732 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!