Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of -regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and -elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with -acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as and from and from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to and 3' regulatory regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457121 | PMC |
http://dx.doi.org/10.3389/fpls.2020.01252 | DOI Listing |
PLoS One
January 2025
Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, United Kingdom.
Many machine learning techniques have been used to construct gene regulatory networks (GRNs) through precision matrix that considers conditional independence among genes, and finally produces sparse version of GRNs. This construction can be improved using the auxiliary information like gene expression profile of the related species or gene markers. To reach out this goal, we apply a generalized linear model (GLM) in first step and later a penalized maximum likelihood to construct the gene regulatory network using Glasso technique for the residuals of a multi-level multivariate GLM among the gene expressions of one species as a multi-levels response variable and the gene expression of related species as a multivariate covariates.
View Article and Find Full Text PDFElife
January 2025
Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States.
Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs).
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
Objectives: COVID-19 and systemic sclerosis (SSc) share multiple similarities in their clinical manifestations, alterations in immune response, and therapeutic options. These resemblances have also been identified in other immune-mediated inflammatory diseases where a common genetic component has been found. Thus, we decided to evaluate for the first time this shared genetic architecture with SSc.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany.
The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.
View Article and Find Full Text PDFAnal Methods
January 2025
Air Resource, Environmental Resource Planning and Management, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India.
Dioxins rank among the most hazardous persistent organic pollutants, presenting a serious threat due to their long environmental lifespan and capacity for bioaccumulation. This comprehensive review delves into the historical, chemical, and toxicological aspects of dioxins, spotlighting significant incidents such as the Seveso disaster and the repercussions of Agent Orange. The review offers a thorough analysis of the sources of dioxin formation, encompassing natural occurrences like volcanic eruptions and wildfires, alongside man-made activities such as industrial combustion and waste incineration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!