This study investigated the effect of aging on mitochondria in granulosa cells (GCs) collected from the antral follicles of young and aged cows (25-50 months and over 140 months in age, respectively). When GCs were cultured under 20% O for 4 days, mitochondrial DNA copy number (Mt-number), determined by real-time PCR, increased throughout the culture period, and the extent of increase was greater in the GCs of young cows than in those of old cows. In a second experiment, GCs were cultured under 20% O for 24 h. Protein levels of TOMM20 and TFAM in GCs were lower in aged cows than in young cows, and the amount of reactive oxygen species and the mitochondrial membrane potential were higher, whereas ATP content and proliferation activity were lower, respectively. Glucose consumption and lactate production were higher in the GCs of aged cows than in those of young cows. When GCs were cultured under 5% or 20% O for 24 h, low O decreased ATP content and increased glucose consumption in GCs of both age groups compared with high O; however, low O decreased the Mt-number only in the GCs of young cows. In conclusion, we show that aging affects mitochondrial quantity, function, and response to differential O tensions in GCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768168 | PMC |
http://dx.doi.org/10.1262/jrd.2020-071 | DOI Listing |
Microbiome
January 2025
State Key Laboratory of Animal Nutrition and Feeding, International Calf and Heifer Organization, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
Background: The growth and health of young ruminants are regulated by their gut microbiome, which can have lifelong consequences. Compared with subjective grouping, phenotypic clustering might be a more comprehensive approach to revealing the relationship between calf growth state and core gut microbes. However, the identification of beneficial gut bacteria and its internal mechanisms of shaping host phenotype differentiation remains unclear.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.
Cattle and other domestic ruminants are the primary reservoirs of O157 and non-O157 Shiga toxin-producing (STEC). Living in areas with high ruminant density has been associated with excess risk of infection, which could be due to both direct ruminant contact and residual environmental risk, but the role of each is unclear. We investigated whether there is any meaningful risk to individuals living in ruminant-dense areas if they do not have direct contact with ruminants.
View Article and Find Full Text PDFVet Med Sci
January 2025
College of Veterinary Medicine and Animal Science, Samara University, Samara, Ethiopia.
Background: Lack of knowledge regarding zoonotic transmission, prevention and control measures is a potential high risk for the occurrence of zoonotic diseases.
Objective: The study aimed to assess knowledge, attitude and practices of dairy farm participants concerning zoonoses.
Animals: A cross-sectional study was conducted from March to August 2022 in and around Sodo town, using a questionnaire among dairy farm participants (n = 123).
Vet Res Commun
January 2025
Brooksco Dairy, L.L.C. Quitman, Quitman, 31643-9403, GA, USA.
The objective was to determine the effects of injectable trace minerals (ITM, containing Se, Cu, Zn & Mn) administered at the time of primary intranasal (IN) modified-live virus (MLV) vaccination of young dairy calves on the serum neutralizing antibody (SNA) titers to Bovine herpes virus 1 (BHV1), Bovine respiratory syncytial virus (BRSV), and Bovine Parainfluenza type 3 virus (BPIV); cytokine expression in peripheral white blood cells, and BHV1-specific IgA titers in nasal secretions following the vaccination. A total of 60 calves (1 month old) were administered an IN MLV vaccine containing BHV1, BRSV, BPIV (Inforce 3) and randomly assigned to one of two experimental groups: ITM (n = 30; Multimin90, containing Se, Cu, Zn, and Mn) or SAL (n = 30; sterile saline). There was a consistent decay in virus-specific SNA titers in both groups.
View Article and Find Full Text PDFEpidemiol Infect
January 2025
Gastroenterology Department, Nazareth Hospital EMMS, Azrieli Faculty of Medicine, Bar Ilan University, Ramat-Gan, Israel.
Hepatitis E virus (HEV) is one of the most common causes of viral hepatitis. We examined HEV seroprevalence and associations of sociodemographic and lifestyle characteristics with HEV immunoglobulin G (IgG) seropositivity in the Arab population. A cross-sectional single-centre study was conducted among adults in the Nazareth area during 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!