Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Recently, ketogenic diet (KD) supplementation has attracted great interest. Therefore, we established the cuprizone (CPZ)-induced demyelination mouse model to investigate the possible neuroprotective effect of KD on the hippocampus of mice. We found that KD significantly elevated the level of serum β-hydroxybutyric acid, improved behavioral and motor abnormalities, and impaired the spatial learning and memory of CPZ-induced demyelination mice. Meanwhile, KD lessened the hippocampal demyelination by enhancing the expression of mature oligodendrocytes (OLs), which was revealed by the elevated expression of MBP and CNPase, as well as the luxol fast blue-staining intensity. Furthermore, KD inhibits the activation of microglia (especially M1-like microglia) and reactive astrocytes. Interestingly, KD attenuated the CPZ-induced oxidative stress by decreasing the malondialdehyde (MDA) content and restoring the glutathione (GSH) levels. In addition, the double immunofluorescence staining revealed that KD enhanced the expression of SIRT1 in astrocytes, microglia, and mature oligodendrocytes. Concomitantly, Western blot demonstrated that KD increased the expression of SIRT1, phosphorylated-AKT, mTOR, and PPAR-γ. In conclusion, KD exerted a neuroprotective effect on CPZ-induced demyelination mice, and this activity was associated with the modulation of the SIRT1/PPAR-γ and SIRT1/P-Akt/mTOR pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.0c04604 | DOI Listing |
eNeuro
January 2025
Graduate School of Pharmaceutical Science, Tokushima Bunri University, Sanuki 769-2193, Japan
Cuprizone (CPZ) is a widely used toxin that induces demyelinating diseases in animal models, producing multiple sclerosis (MS)-like pathology in rodents. CPZ is one of the few toxins that triggers demyelination and subsequent remyelination following the cessation of its application. This study examines the functional consequences of CPZ-induced demyelination and the subsequent recovery of neural communication within the anterior cingulate cortex (ACC), with a particular focus on interhemispheric connectivity via the corpus callosum (CC).
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Traditional Chinese Medicine, Capital Medical University, Beijing, China. Electronic address:
Ethnopharmacological Relevance: The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated.
Aim Of The Study: This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice.
Pharmacol Biochem Behav
December 2024
Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan. Electronic address:
Demyelination in the central nervous system (CNS) is a feature of various psychiatric and neurological disorders. Emerging evidence suggests that the gut-brain axis may play a crucial role in CNS demyelination. The cuprizone (CPZ) model, which involves the administration of CPZ-containing food pellets, is commonly used to study the effects of different compounds on CNS demyelination and subsequent remyelination.
View Article and Find Full Text PDFCNS Neurosci Ther
November 2024
Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
Biometals
February 2025
Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt.
Berberine (BBN) is a naturally occurring alkaloid as a secondary metabolite in many plants and exhibits several benefits including neuroprotective activities. However, data on the neuromodulating potential of nanoformulated BBN are still lacking. In the present study, BBN loaded within iron oxide nanoparticles (BBN-IONP) were prepared and characterized by transmission electron microscopy FTIR, X-ray photoelectron spectroscopy particle-size distribution, zeta potential, and HPLC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!