Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Recently, ketogenic diet (KD) supplementation has attracted great interest. Therefore, we established the cuprizone (CPZ)-induced demyelination mouse model to investigate the possible neuroprotective effect of KD on the hippocampus of mice. We found that KD significantly elevated the level of serum β-hydroxybutyric acid, improved behavioral and motor abnormalities, and impaired the spatial learning and memory of CPZ-induced demyelination mice. Meanwhile, KD lessened the hippocampal demyelination by enhancing the expression of mature oligodendrocytes (OLs), which was revealed by the elevated expression of MBP and CNPase, as well as the luxol fast blue-staining intensity. Furthermore, KD inhibits the activation of microglia (especially M1-like microglia) and reactive astrocytes. Interestingly, KD attenuated the CPZ-induced oxidative stress by decreasing the malondialdehyde (MDA) content and restoring the glutathione (GSH) levels. In addition, the double immunofluorescence staining revealed that KD enhanced the expression of SIRT1 in astrocytes, microglia, and mature oligodendrocytes. Concomitantly, Western blot demonstrated that KD increased the expression of SIRT1, phosphorylated-AKT, mTOR, and PPAR-γ. In conclusion, KD exerted a neuroprotective effect on CPZ-induced demyelination mice, and this activity was associated with the modulation of the SIRT1/PPAR-γ and SIRT1/P-Akt/mTOR pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.0c04604DOI Listing

Publication Analysis

Top Keywords

cpz-induced demyelination
12
demyelination mouse
8
ketogenic diet
8
demyelination mice
8
mature oligodendrocytes
8
expression sirt1
8
cuprizone-induced demyelination
4
mouse hippocampus
4
hippocampus alleviated
4
alleviated ketogenic
4

Similar Publications

Cuprizone (CPZ) is a widely used toxin that induces demyelinating diseases in animal models, producing multiple sclerosis (MS)-like pathology in rodents. CPZ is one of the few toxins that triggers demyelination and subsequent remyelination following the cessation of its application. This study examines the functional consequences of CPZ-induced demyelination and the subsequent recovery of neural communication within the anterior cingulate cortex (ACC), with a particular focus on interhemispheric connectivity via the corpus callosum (CC).

View Article and Find Full Text PDF

Ethnopharmacological Relevance: The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated.

Aim Of The Study: This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice.

View Article and Find Full Text PDF

Demyelination in the central nervous system (CNS) is a feature of various psychiatric and neurological disorders. Emerging evidence suggests that the gut-brain axis may play a crucial role in CNS demyelination. The cuprizone (CPZ) model, which involves the administration of CPZ-containing food pellets, is commonly used to study the effects of different compounds on CNS demyelination and subsequent remyelination.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the phospholipase D family member 4 (PLD4) gene in promoting remyelination in a mouse model of multiple sclerosis induced by cuprizone (CPZ).
  • Researchers used various assays to assess remyelination and found that PLD4 is upregulated during both demyelination and remyelination phases, impacting microglial activity.
  • The results suggest that PLD4 regulates microglial phagocytosis and remyelination through the AKT signaling pathway, highlighting its potential as a target for MS treatment.
View Article and Find Full Text PDF

Berberine-loaded iron oxide nanoparticles alleviate cuprizone-induced astrocytic reactivity in a rat model of multiple sclerosis.

Biometals

February 2025

Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt.

Berberine (BBN) is a naturally occurring alkaloid as a secondary metabolite in many plants and exhibits several benefits including neuroprotective activities. However, data on the neuromodulating potential of nanoformulated BBN are still lacking. In the present study, BBN loaded within iron oxide nanoparticles (BBN-IONP) were prepared and characterized by transmission electron microscopy FTIR, X-ray photoelectron spectroscopy particle-size distribution, zeta potential, and HPLC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!