Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: In factor XI (FXI) deficiency, bleeding cannot be predicted by routine analyses. Since FXI is involved in tissue factor (TF)-independent propagation loop of coagulation, we hypothesized that investigating the spatiotemporal separated phases of coagulation (TF-dependent and -independent) could improve diagnostics.
Objectives: This article investigates the correlation of parameters describing TF-dependent and -independent coagulation with the clinical phenotype of FXI deficiency and their ability to assess hemostasis after FXI replacement.
Methods: We analyzed: (1) plasma from healthy controls ( = 53); (2) normal plasma ( = 4) spiked with increasing concentrations of a specific FXI inhibitor (C7P); (3) plasma from FXI-deficient patients ( = 24) with different clinical phenotypes (13 bleeders, 8 non-bleeders, 3 prothrombotics); (4) FXI-deficient plasma spiked with FXI concentrate ( = 6); and (5) plasma from FXI-deficient patients after FXI replacement ( = 7). Thrombin generation was measured with the reference method calibrated automated thrombogram and with Thrombodynamics (TD), a novel global assay differentiating TF-dependent and -independent coagulation.
Results: C7P dose-dependently decreased FXI activity, prolonged activated partial thromboplastin time, and hampered TF-independent coagulation. In FXI-deficient bleeders, TD parameters describing TF-independent propagation of coagulation and fibrin clot formation were reduced compared with controls and FXI-deficient nonbleeders and increased in FXI-deficient patients with prothrombotic phenotype. Receiver operating characteristic analysis indicated that TF-independent parameters were useful for discriminating FXI-deficient bleeders from non-bleeders. In FXI-deficient plasma spiked with FXI concentrate and in patients receiving FXI replacement, TD parameters were shifted toward hypercoagulation already at plasma FXI levels around 20%.
Conclusion: TF-independent coagulation parameters assessed by TD have the potential to identify the clinical phenotype in FXI-deficient patients and to monitor FXI replacement therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0040-1715899 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!