A novel curcumin-analogous fluorescent sensor, DNP, was developed for cysteine detection with a bilateral-response click-like mechanism. DNP indicated high selectivity and practical sensitivity. It could recognize Cys from other biologically relevant molecules, especially, from GSH and Hcy. The most interesting point was that, with typical azide groups for sensing, DNP indicated a covalent binding procedure with Cys instead of a presupposed simple reduction for reductive sulfide. Moreover, the recognition occurred at both sides of the sensor. DNP could be utilized into the detection of endogenous and exogenous Cys in living cells. Though the specific optical performances of DNP still need optimization, this work supplied novel information for broadening the vision on fluorophores and mechanisms, for the monitoring of Cys and even other sulfur-containing species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2020.118879 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2021
College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, No.163 Xianlin Road, Nanjing 210023, China. Electronic address:
A novel curcumin-analogous fluorescent sensor, DNP, was developed for cysteine detection with a bilateral-response click-like mechanism. DNP indicated high selectivity and practical sensitivity. It could recognize Cys from other biologically relevant molecules, especially, from GSH and Hcy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!