Aluminum (Al) toxicity is a major yield-limiting factor for crops in acidic soils. In this work, we have investigated the potential role of spermidine (Spd) on Al toxicity in rice chloroplasts. Exogenous Spd markedly reduced Al concentration and elevated other nutrient elements such as Mn, Mg, Fe, K, Ca, and Mo in chloroplasts of Al-treated plants. Meanwhile, Spd further activated arginine decarboxylase (ADC) activity of key enzyme in polyamine (PA) synthesis, and enhanced PA contents in chloroplasts. Spd application dramatically addressed Al-induced chlorophyll (Chl) losses, inhibited thylakoid membrane protein complexes degradation, especially photosystem II (PSII), and significantly depressed the accumulations of superoxide radical (O·), hydrogen peroxide (HO), and malondialdehyde (MDA) in chloroplasts. Spd addition activated antioxidant enzyme activities and decreased soluble sugar content in chloroplasts compared with Al treatment alone. Spd not only reversed the inhibition of photosynthesis-related gene transcript levels induced by Al toxicity, but diminished the increased expression of Chl catabolism-related genes. Furthermore, Chl fluorescence analysis showed that Spd protected PSII reaction centers and photosynthetic electron transport chain under Al stress, thus improving photosynthetic performance. These results suggest that PAs are involved in Al tolerance in rice chloroplasts and can effectively protect the integrity and function of photosynthetic apparatus, especially PSII, by mitigating oxidative damage induced by Al toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2020.111265 | DOI Listing |
J Forensic Sci
January 2025
LIMA, Instituto de Química, Universidade de Brasília-UnB, Brasília, Brazil.
Fingermarks are important forensic evidence for identifying people. In this work, luminescent MOF [Eu(BDC)(HO)] (herein referred as EuBDC) was tested as a potential latent fingermark (LF) luminescent developer powder and its acute toxicity evaluated following OECD protocol 423. The results showed that the powder can develop groomed LF on materials such as leather, plastic, metal, glass, cardboard, and aluminum.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
On acidified soil, the growth of Eucalyptus is seriously restricted by aluminum (Al) stress. Therefore, breeding Eucalyptus species with excellent Al tolerance, developing the genetic potential of species, and improving tolerance to Al stress are important for the sustainable development of artificial Eucalyptus forests. By observing the occurrence and distribution of the main reactive oxygen species (ROS) and reactive nitrogen species (RNS) in root tips of Eucalyptus seedlings under Al stress, this study analyzed change in the growth and physiological indexes of Eucalyptus seedlings under Al stress.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.
Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency.
View Article and Find Full Text PDFToxicol Rep
June 2025
Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Egypt.
Aluminum phosphide (ALP) is an extremely toxic substance that causes significant morbidity and mortality. Early identification of patients at risk could improve their outcomes. Therefore, this study evaluated the role of serial arterial blood gases and serum cortisol levels in predicting outcomes in patients with acute ALP poisoning.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
Lipids, as key components of biological membranes, play vital roles in sensing and initiating plant responses to various abiotic stresses. Here, the alteration of membrane fatty acids in wheat roots under Al stress was investigated using two genotypes differing in Al tolerance, and the role of linoleic acid in Al tolerance was comprehensively explored. Significant differences in the fatty acid profiles were observed, with increased linoleic acid accumulation in the Al-tolerant genotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!