High methylmercury uptake by green algae in Lake Titicaca: Potential implications for remediation.

Ecotoxicol Environ Saf

Laboratorio de Calidad Ambiental, Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario de Cota Cota, Casilla, 3161, La Paz, Bolivia.

Published: January 2021

Anthropogenic pressure in the high altitude lakes such as Titicaca and Uru (Bolivia) may favor the production of methylmercury (MeHg) known to accumulate in trophic chains. Periphyton associated with emerged aquatic plants (totoras) from the lake shores accumulates and demethylates MeHg providing a potential cost-effective water treatment technique. In this laboratory study, we measured the MeHg uptake kinetics of a consortium of green algae isolated from Lake Titicaca totora's periphyton. The most abundant algal consortium, composed of Oedogonium spp., Chlorella spp., Scenedesmus spp., was exposed to rising MeHg concentrations (from 5 to 200 ng·L) to assess their maximum potential capacity for MeHg accumulation. Various algal biomass concentrations were tested to choose the optimal one. Results provided a net MeHg uptake rate by this algal consortium of 2.38 amol ng·h·nM (the total uptake was 2863 ng MeHg·g) for an initial concentration of 200 ng MeHg·L with an algal biomass concentration of 0.02 g·L. This initial MeHg concentration is 1000 times higher than the one measured in the eutrophic Cohana Bay of Lake Titicaca, which shows the high accumulation potential of these green algae. Our data suggest that periphyton has a high potential for the treatment of Hg contaminated waters in constructing wetlands in the Andean Altiplano.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111256DOI Listing

Publication Analysis

Top Keywords

green algae
12
lake titicaca
12
mehg uptake
8
algal consortium
8
algal biomass
8
mehg
7
potential
5
high
4
high methylmercury
4
uptake
4

Similar Publications

Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).

View Article and Find Full Text PDF

Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.

View Article and Find Full Text PDF

The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion.

View Article and Find Full Text PDF

Chlorella vulgaris has antioxidant, antimicrobial, and anti-inflammatory properties, as well as the probiotic that is important for keeping the intestinal microbiota balanced. The objective was to test the impact of supplementation with microalgae and/or probiotics on broiler chickens' performance, immunity, and intestinal microbiota. The experimental design was in randomized blocks in a 4x2 factorial scheme, with four levels of inclusion of C.

View Article and Find Full Text PDF

In the context of climate changing environments, microalgae can be excellent organisms to understand molecular mechanisms that activate survival strategies under stress. Chlamydomonas reinhardtii signalling mutants are extremely useful to decipher which strategies photosynthetic organisms use to cope with changeable environments. The mutant vip1-1 has an altered profile of pyroinositol polyphosphates (PP-InsPs), which are signalling molecules present in all eukaryotes and have been connected to P signalling in other organisms including plants, but their implications in other nutrient signalling are still under evaluation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!