Everyone can be susceptible to motion sickness (except those with complete loss of labyrinth function) and around one in three are known to be servery susceptible. Motion sickness can be experienced in many domains, including car travel, on a boat, using virtual reality headsets and simulator use amongst others. It is expected that due to potential designs and use cases, self-driving cars will increase motion sickness onset likelihood and severity for many car travellers. Besides medication, there are limited methods through which one can actively reduce their motion sickness susceptibility. This research develops a novel visuospatial training tool and explores the effect of visuospatial training on motion sickness. With a combined sample of 42 participants split between driving simulator trials (n = 20), and on-road trials (n = 22) baseline visuospatial skills and motion sickness were first measured. After a 14-day training period where participates completed 15-min of pen and paper tasks per day, it was found that visuospatial skills improved by 40%. This increase in visuospatial ability was shown to be directly responsible for a reduction in motion sickness by 51% in the simulator (with a 60% reduction in participant dropouts) and a 58% reduction in the on-road trial. This research has successfully identified a new method to reduce motion sickness susceptibility and the impact of these findings have wide reaching implications for motion sickness research, especially in the field of self-driving vehicles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apergo.2020.103264DOI Listing

Publication Analysis

Top Keywords

motion sickness
40
sickness susceptibility
12
motion
10
sickness
10
visuospatial ability
8
susceptible motion
8
reduce motion
8
visuospatial training
8
visuospatial skills
8
visuospatial
6

Similar Publications

Introduction: Vestibular migraine (VM), particularly its chronic variant, poses a diagnostic challenge. Patients suffering from VM may not have the characteristic headaches associated with the dizziness. In these cases, a marker for migraine pathology in general could help appropriately diagnose certain types of dizziness as migrainous despite these patients not meeting current diagnostic criteria for VM.

View Article and Find Full Text PDF

Cognitive Training Using Virtual Reality: An Assessment of Usability and Adverse Effects.

Arch Rehabil Res Clin Transl

December 2024

Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea.

Objective: To evaluate the usability and adverse effects associated with virtual reality (VR) cognitive training and identify factors influencing them.

Design: Survey-based observational study.

Setting: Department of Rehabilitation Medicine in the hospital.

View Article and Find Full Text PDF

Background: To overcome the challenge of psychotherapist scarcity in applying pain psychotherapy in clinical practice, we developed a virtual reality (VR) program delivering weeks of pain psychotherapy without psychotherapists, with a focus on minimizing the risk of motion sickness.

Objectives: We conducted a single-arm pilot study to assess the efficacy and motion sickness associated with a VR session delivering guided imagery and breathing techniques selected from the initial course of our VR program, involving patients suffering from various acute and chronic pain.

Methods: Patients underwent a 15-min VR session.

View Article and Find Full Text PDF
Article Synopsis
  • Family caregivers (FCGs) of cancer patients in hospice face psychological challenges and decreased quality of life due to caregiving demands, signaling a need for supportive interventions.
  • A virtual reality (VR) nature experience was implemented, allowing FCGs to immerse themselves in calming scenes at home, which they found to enhance relaxation and provide an escape from their caregiving stress.
  • Preliminary findings indicate that the VR intervention is feasible and acceptable, suggesting it can support the emotional health of hospice FCGs, though further research with larger and more diverse groups is necessary.
View Article and Find Full Text PDF

Remote Extended Reality with Markerless Motion Tracking for Sitting Posture Training.

IEEE Robot Autom Lett

November 2024

Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.; Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY, 10027, USA.

Dynamic postural control during sitting is essential for functional mobility and daily activities. Extended reality (XR) presents a promising solution for posture training in addressing conventional training limitations related to patient accessibility and ecological validity. We developed a remote XR rehabilitation system with markerless motion tracking for sitting posture training.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!