Ecological restoration program (ERP) is widely recognized as an effective measure to combat land degradation and improve environmental quality. However, inappropriate ERPs lead to trade-offs between soil retention and water yield as well as conflicts of soil and water resources between the midstream and the downstream of catchment. This study aims to assess the efficiency of ERPs in soil erosion control and identify the trade-offs between soil retention and water yield through the lens of runoff and sediment regimes in contrasting catchments of the Loess Plateau (LP) and the Karst Plateau (KP). Although favorable climate and rapid vegetation restoration substantially reduced water erosion in both these areas, the hydrological responses were not the same because of climate differences. In the arid LP, water and energy variables correlated closely with vegetation cover. Excessive afforestation programs in drylands increased vegetation transpiration and soil evaporation, further exhausting soil water resources, and eventually causing water yield reduction. However, soil and water conservation programs (SWCPs) in the humid KP reduced sediment yield substantially, and the runoff remained stable. Significant runoff reduction in the midstream of the Yellow River aggravated water scarcity and threatened the downstream water demand. Meanwhile, sediment load decline in the LP and the KP impacted sediment deposition in the downstream and estuary formation. From the perspective of integrated catchment governance, human interventions including ERP and SWCP should be more sustainable and consider not only the target process at the local scale (intracoupling effect), but also unprecedented non-target process at the regional scale (telecoupling effect). In addition, it should allow for the supply-demand balance of competing soil and water resources to achieve the coordinated development of resources, environment, and production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.142139 | DOI Listing |
Sci Total Environ
January 2025
CATIE, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba 30501, Costa Rica.
Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
Rigor and reproducibility are vital to scientific advancement. It is unclear whether a protocol optimized for tissue dissociation in one institution performs well universally. Here, we share our brand-new lab's experience with inter-institutional variability that led to the discovery that a protocol optimized for murine lung dissociation at Boston University (BU) fails to reproduce similar CD4 T cell, CD8 T cell, and B cell outcomes at the University of Michigan at Ann Arbor (U-M).
View Article and Find Full Text PDFTransgenic Res
January 2025
Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozpur Road, Lahore, 54600, Pakistan.
Drought, as an abiotic stressor, globally limits cereal productivity, leading to early aging of leaves and lower yields. The expression of the isopentenyl transferase (IPT) gene, which is involved in cytokinin (CK) biosynthesis, can delay drought-induced leaf senescence. In this study, the Agrobacterium Isopentenyl transferase (IPT) gene was introduced into two local hexaploid wheat cultivars, NR-421 and FSD-2008.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA.
Background: Cognitive decline during normative aging significantly impacts the quality of life, while the rate varies among individuals. MRI studies have highlighted the correlation between cognitive functions and brain macrostructure. However, cerebral microstructural alterations, especially in white matter, may precede macrostructural changes, driving early cognitive decline.
View Article and Find Full Text PDFBackground: Specimen analysis is crucial for identifying imaging and neuropathological signatures. Histology is the gold-standard, but sample preparation and sectioning induce tissue deformations which hinder quantitative analysis or registration of histology to 3D MRI providing a challenge to the development of MRI biomarkers. Overall, we aim to develop a workflow to correlate histology with high-resolution MRI at a microscopic level (Figure 1), Here, we evaluate a critical step in this process - the section quality from tissue mounting techniques, comparing: A) traditional water bath (Figure 1F), and B) tape transfer (Figure 1G), for the purpose of image segmentation and correlation with high-resolution MRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!