Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: The Global Leadership Initiative on Malnutrition (GLIM) was proposed to provide a common malnutrition diagnostic framework. The aims of this study were to evaluate the applicability and validity of the GLIM and use machine-learning techniques to help provide the best malnutrition-related variables/combinations to predict complications in patients undergoing gastrointestinal (GI) surgeries.
Method: This was a prospective cohort study enrolling surgical patients with GI diseases. Malnutrition prevalence was classified by the GLIM, subjective global assessment (SGA), and various anthropometric parameters. The various combination of the phenotypic criteria generated 10 different models. Sensibility (SE) and specificity (SP) were calculated using SGA as the reference criterion. Machine-learning approaches were used to predict complications. P < 0.05 was set as statistically significant.
Results: We evaluated 206 patients. Half of the patients were malnourished according SGA, and 16.5% had postoperative complications. The prevalence of malnutrition using GLIM varied from 10.7% to 41.3% among the whole population, 11.7% and 43.6% in the elderly, from 0 to 24% in overweight non-obese and from 0 to 19.6% in obese patients. SE and SP values varied between 61.2% and 100% and 55.3% and 98.1%, respectively, for the general population. Machine-learning models indicated that midarm circumference, one of the GLIM models, and midarm muscle area were the most relevant criteria to predict complications.
Conclusions: The various GLIM combinations provided different rates of malnutrition according to the population. Machine-learning techniques supported the use of common single variables and one GLIM model to predict postoperative complications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nut.2020.110961 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!