This study examined a mountainous area with two hydrochemically distinct CO-rich springs to understand the origin, flow, and leakage of CO, which may provide implications for precise monitoring of CO leakage in geological carbon storage (GCS) sites. The carbon isotopic compositions of dissolved inorganic carbon (DIC) in CO-rich water (δC) and those of soil CO (δC) indicated a deep-seated CO supply to the near-surface environment in the study area. The hydrochemical difference (e.g. pH, total dissolved solids) for the two CO-rich springs separated by 7 m, despite similar δC and partial pressure of CO, was considered as the result of different evolution of shallow groundwater affected by deep-seated CO preferentially rising along fracture zones. Electrical resistivity tomography also suggested flow through fracture zones beneath the CO-rich springs, showing low resistivity compared to other surveyed zones. However, soil CO efflux was low compared to that in other natural CO emission sites, and in particular it was noticeably low near the CO-rich springs, whereas δC was high close the CO-rich springs. The dissolution of CO in the near-surface water body seemed to decrease the deep-seated CO leakage through the soil layer, while δC imprinted the source. End-member mixing analysis was performed to assess the contribution of deep-seated CO to the low soil CO efflux by assuming that atmospheric CO and soil CO (by respiration) as well as deep-seated CO contribute to the soil CO efflux. For each end-member, characteristic δC and CO concentrations were defined, and then their apportionment to soil CO efflux was estimated. The resultant proportion of deep-seated CO was up to 8.8%. Unlike the spatial distribution of high soil CO efflux, high proportions exceeding 3% were found around the CO-rich springs along the east-west valley. The study results indicate that soil CO efflux measurement should be combined with carbon isotopic analysis in GCS sites for CO leakage detection because CO dissolution in the underground water body may blur leakage detection on the surface. The implication of this study is the need to quantitatively assess the contribution of deep-seated CO using the soil CO concentration, soil CO efflux, and δC at each measurement site.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.111333 | DOI Listing |
Arch Pharm (Weinheim)
January 2025
Dipartimento di Scienze Chimiche (DSC), Università di Catania, Catania, Italy.
Multidrug resistance (MDR) due to the overexpression of the P-glycoprotein (P-gp) efflux pump remains a significant challenge in cancer therapy, also in breast cancer. Traditional pharmacological approaches have focused on using inhibitors to modulate P-gp expression and function. Curcumin, a polyphenol derived from Curcuma longa L.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China; College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, PR China. Electronic address:
Biological soil crusts (BSCs) are the main landscape on the Qinghai-Tibetan Plateau and an ecological indicator of human disturbance. Information about antibiotic resistomes in BSCs on the Qinghai-Tibetan Plateau can provide baseline for the risk assessment and management of resistomes and yet to be explored. This work investigated the profiles and geographic patterns of antibiotic resistomes in BSCs along the Lhasa River and their response to anthropogenic activities for the first time.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China.
Polycyclic aromatic hydrocarbons (PAHs) are widespread contaminants that can accumulate in microorganisms, posing significant ecological risks. While previous studies primarily focused on PAH concentrations, the impacts of PAH self-clustering have been largely overlooked, which will lead to inaccurate assessments of their ecological risks. This study evaluates the toxic effects of four prevalent PAH clusters on microbes with an emphasis on comparing the cluster sizes.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
National Institute of Technology, NIT Campus PO, Kozhikode, Kerala 673012, India.
The broader soil bacterial community responses at ecotoxicologically relevant levels of nano ZnO (nZnO) focussing on co-selection of antibiotic resistance (AR) were investigated. nZnO imposed a stronger influence than the bulk counterpart (bZnO) on antibiotic resistance genes (ARGs) with multidrug resistance (MDR) systems being predominant (63 % of total ARGs). Proliferation of biomarker ARGs especially for last resort antibiotic like vancomycin was observed and Streptomyces hosted multiple ARGs.
View Article and Find Full Text PDFPoult Sci
December 2024
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, 573 Tulip Street, Changchun 130122, Jilin, PR China.. Electronic address:
This study examines the distribution of microbial communities and antibiotic resistance genes (ARGs) across various vectors in poultry farm environments. The results show that airborne particulate matter (PM) and soil harbor the highest counts of microbial genes, exceeding those found in poultry visceral samples, which display lower microbial diversity and ARG levels. This highlights environmental vectors, particularly soil and PM, as major reservoirs for ARGs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!