Accurate calculation of molecular polarizabilities and Raman intensities required high-level correlated wave functions (CCSD) and large basis set with the inclusion of electronic correlation within experimental precision. These requirements, in terms of time and computation, are economically costly. Polarized Gaussian basis sets adapted to effective core potentials (ECPs) for the static and frequency dependent Raman intensities is presented. The results of the proposed basis sets at CCSD and DFT levels in comparison with Sadlej-pVTZ, as reference basis set, show quite a good quantitative agreement in the properties with a valuable reduction in the computational time and resources. Multivariate principal component analysis (PCA) was performed to study the assessment of the efficiency of proposed methodology and diagnose the inherent information related to the kind of normal vibrational mode of each molecule, based on the variations in the computed Raman intensities. The results, in the form of score-plots, explored a clear segregation and classification among the Raman intensities data, revealing its dependence on the excitation frequencies of laser and nature of the vibrational mode of each molecule of interest. Moreover, the projection of the loadings-plots of the PCs successfully enabled to classify the most correlated computational methods in to the same groups, and made isolations of the less efficient basis functions at the corresponding theoretical method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2020.118891 | DOI Listing |
The optical properties of the 1D nanograting chip have been explored based on computational and experimental studies. Dispersion curve analysis demonstrates cavity and surface plasmon modes in the 1D nanograting chips with periods of 400 nm and 800 nm. In this grating period range, the cut-off period is at a grating period of 644 nm under excitation with a wavelength of 670 nm.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.
Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Restorative Dentistry - Endodontics, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil.
Objectives: To investigate volumetric changes, in vivo biocompatibility, and systemic migration from eight commercial endodontic sealer materials in paste/paste, powder/liquid, and pre-mixed forms.
Materials And Methods: The sealers AH Plus Bioceramic, AH Plus Jet, BioRoot RCS, MTApex, Bio-C Sealer, Bio-C Sealer Ion+, EndoSequence BC Sealer and NeoSEALER Flo were studied. After characterisation by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy and X-ray diffractometry (XRD), tubes were implanted in Wistar rats' alveolar bone and subcutaneous tissues.
ACS Nano
January 2025
Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada.
Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS.
View Article and Find Full Text PDFACS Nano
January 2025
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China.
Knowledge of localized strain at the micrometer scale is essential for tailoring the electrical and mechanical properties of ongoing thinning of crystal silicon (c-Si) solar cells. Thinning c-Si wafers below 110 m are susceptible to cracking in manufacturing due to the nonuniform stress distribution at a micrometer region, necessitating a rigorous technique to reveal the localized stress distribution correlating with its device electrical output. In this context, a Raman microscopy integrated with a photovoltage mapping setup with high resolution to the submicrometer scale is developed to acquire correlative Raman-voltage of the localized physical properties at the microcracks on the rear side of c-Si solar cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!