Leucine-rich repeat kinase 2 (LRRK2), the major causative gene product of autosomal-dominant Parkinson's disease, is a protein kinase that phosphorylates a subset of Rab GTPases. Since pathogenic LRRK2 mutations increase its ability to phosphorylate Rab GTPases, elucidating the mechanisms of how Rab phosphorylation is regulated by LRRK2 is of great importance. We have previously reported that chloroquine-induced lysosomal stress facilitates LRRK2 phosphorylation of Rab10 to maintain lysosomal homeostasis. Here we reveal that Rab10 phosphorylation by LRRK2 is potently stimulated by treatment of cells with a set of lysosome stressors and clinically used lysosomotropic drugs. These agents commonly promoted the formation of LRRK2-coated enlarged lysosomes and extracellular release of lysosomal enzyme cathepsin B, the latter being dependent on LRRK2 kinase activity. In contrast to the increase in Rab10 phosphorylation, treatment with lysosomotropic drugs did not increase the enzymatic activity of LRRK2, as monitored by its autophosphorylation at Ser1292 residue, but rather enhanced the molecular proximity between LRRK2 and its substrate Rab GTPases on the cytosolic surface of lysosomes. Lysosomotropic drug-induced upregulation of Rab10 phosphorylation was likely a downstream event of Rab29 (Rab7L1)-mediated enzymatic activation of LRRK2. These results suggest a regulated process of Rab10 phosphorylation by LRRK2 that is associated with lysosomal overload stress, and provide insights into the novel strategies to halt the aberrant upregulation of LRRK2 kinase activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2020.105081 | DOI Listing |
Nat Commun
September 2024
Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
The leucine-rich repeat kinase 2 (LRRK2) phosphorylates a subset of RAB GTPases, and their phosphorylation levels are elevated by Parkinson's disease (PD)-linked mutations of LRRK2. However, the precise function of the LRRK2-regulated RAB GTPase in the brain remains to be elucidated. Here, we identify RAB12 as a robust LRRK2 substrate in the mouse brain through phosphoproteomics profiling and solve the structure of RAB12-LRRK2 protein complex through Cryo-EM analysis.
View Article and Find Full Text PDFHum Mol Genet
November 2024
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, 1719 Sixth Avenue South, Civitan International Research Building 510, Birmingham, AL 35294, United States.
LRRK2 mutations are among the most common genetic causes for Parkinson's disease (PD), and toxicity is associated with increased kinase activity. 14-3-3 proteins are key interactors that regulate LRRK2 kinase activity. Phosphorylation of the 14-3-3θ isoform at S232 is dramatically increased in human PD brains.
View Article and Find Full Text PDFLRRK2 contains a kinase domain where both the N2081D Crohn's disease (CD) risk and the G2019S Parkinson's disease (PD)-pathogenic variants are located. The mechanisms by which the N2081D variant increase CD risk, and how these adjacent mutations result in distinct diseases, remain unclear. To investigate the pathophysiology of the CD-linked LRRK2 N2081D variant, we generated a knock-in (KI) mouse model and compared its effects to those of the LRRK2-G2019S mutation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2024
Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307.
Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's.
View Article and Find Full Text PDFbioRxiv
July 2024
Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Leucine-rich repeat kinase 2 (LRRK2) phosphorylates a subset of RAB GTPases, and the phosphorylation levels are elevated by Parkinson's disease (PD)-linked mutations of LRRK2. However, the precise function of the specific RAB GTPase targeted by LRRK2 signaling in the brain remains to be elucidated. Here, we identify RAB12 as a robust LRRK2 substrate in the mouse brains through phosphoproteomics profiling and solve the structure of RAB12-LRRK2 protein complex through Cryo-EM analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!