Using OpenMX quantum chemistry software for self-consistent field calculations of electronic structure with geometry optimization and 3D-RISM-KH molecular theory of solvation for 3D site distribution functions and solvation free energy, we modeled the reduction of CO+H in ambient aqueous electrolyte solution of 1.0-M KHPO into (i) formic acid HCOOH and (ii) CO HO on the surfaces of Cu-, Fe-, CuO-, and FeO-based nanocatalysts. It is applicable to its further reduction to hydrocarbons. The optimized geometries and free energies were obtained for the pathways of adsorption of the reactants from the solution, successive reduction on the surfaces of the nanocatalysts, and then release back to the solution bulk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-020-04529-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!