A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Glyphosate and nickel differently affect photosynthesis and ethylene in glyphosate-resistant soybean plants infected by Phakopsora pachyrhizi. | LitMetric

Glyphosate and nickel differently affect photosynthesis and ethylene in glyphosate-resistant soybean plants infected by Phakopsora pachyrhizi.

Physiol Plant

Departamento de Fitopatologia, Universidade Federal de Viçosa, Laboratório da Interação Planta-Patógeno, Viçosa, 36570-900, Brazil.

Published: December 2020

Nickel (Ni) and glyphosate (Gl) are able to reduce the symptoms of Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, in soybean. However, their combined effects on the energy balance and ethylene metabolism of soybean plants infected with this fungus has not been elucidated. Therefore, the effects of Ni, Gl, and the combination of Ni + Gl on ASR development, photosynthetic capacity, sugar concentrations, and ethylene concentrations in plants of a Gl-resistant cultivar, uninfected or infected with P. pachyrhizi, were investigated. Inoculated plants supplied with Ni had the highest foliar Ni concentration in all the treatments. Gl had a negative effect on the foliar Ni concentration in Ni-sprayed plants. The ASR severity was reduced in plants sprayed with Ni and Gl. Carotenoid and chlorophyll concentrations were higher in inoculated Ni, Gl, and Ni + Gl plants than in control plants. Based on the chlorophyll a fluorescence parameters, the photosynthetic apparatus of the control inoculated plants was damaged, and the least amount of energy was directed to the photochemistry process in these plants. The reduced capacity of the photosynthetic mechanism to capture light and use the energy absorbed by photosystem II in inoculated plants was reflected in their reduced capacity to process CO , as indicated by the high internal CO concentrations and low rates of net carbon assimilation. The low sugar concentrations in inoculated plants from the control treatment were linked to their reduced photosynthetic capacity due to the high ASR severity. In uninfected plants, the ethylene concentration was not affected by Ni or Gl, while the ethylene concentration decreased in inoculated plants; this decrease was more pronounced in plants from the control treatment than in treated inoculated plants. In conclusion, this study sheds light on the role played by both Ni and Gl in ASR control from a physiological perspective. Soybean plants exposed to Ni and Gl were able to maintain high ethylene concentrations and photosynthetic capacity during the P. pachyrhizi infection process; as a result, these plants consumed less of their reserves than inoculated plants not treated with Ni or Gl.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.13195DOI Listing

Publication Analysis

Top Keywords

inoculated plants
28
plants
19
soybean plants
12
photosynthetic capacity
12
plants control
12
plants infected
8
phakopsora pachyrhizi
8
sugar concentrations
8
ethylene concentrations
8
inoculated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!