Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetic skyrmions are topological spin textures, which usually exist in noncentrosymmetric materials where the crystal inversion symmetry breaking generates the so-called Dzyaloshinskii-Moriya interaction. This requirement unfortunately excludes many important magnetic material classes, including the recently found two-dimensional van der Waals (vdW) magnetic materials, which offer unprecedented opportunities for spintronic technology. Using photoemission electron microscopy and Lorentz transmission electron microscopy, we investigated and stabilized Néel-type magnetic skyrmion in vdW ferromagnetic FeGeTe on top of (Co/Pd) in which the FeGeTe has a centrosymmetric crystal structure. We demonstrate that the magnetic coupling between the FeGeTe and the (Co/Pd) could create skyrmions in FeGeTe without the need of an external magnetic field. Our results open exciting opportunities in spintronic research and the engineering of topologically protected nanoscale features by expanding the group of skyrmion host materials to include these previously unknown vdW magnets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473669 | PMC |
http://dx.doi.org/10.1126/sciadv.abb5157 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!