Thermosensitive liposomes represent an important paradigm in oncology, where hyperthermia-mediated release coupled with thermal bioeffects enhance the effectiveness of chemotherapy. Their widespread clinical adoption hinges upon performing controlled targeted hyperthermia, and a leading candidate to achieve this is temperature-based magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS). However, the current approach to hyperthermia involves exposures lasting tens of minutes to hours, which is not possible to achieve in many circumstances because of blood vessel cooling and respiratory motion. Here, we investigate a novel approach to overcome these limitations: to use fractionated ultrashort (~30 s) thermal exposures (~41° to 45°C) to release doxorubicin from a thermosensitive liposome. This is first demonstrated in a dorsal chamber tumor model using two-photon microscopy. Thermal exposures were then conducted with a rabbit tumor model using a custom MRgFUS system incorporating temperature feedback control. Drug release was confirmed, and longitudinal experiments demonstrated profoundly enhanced tumor growth inhibition and survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467687 | PMC |
http://dx.doi.org/10.1126/sciadv.aba5684 | DOI Listing |
Mol Ecol
January 2025
Department of Biology, Colorado State University, Fort Collins, Colorado, USA.
Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Public Health, China Medical University, Taichung City, Taiwan. Electronic address:
Marine litter and microplastics (MPs) represent pressing environmental challenges; however, the impact of marine litter on airborne MPs near marine litter hotspot remains unexplored. In this study, we simultaneously collected airborne MPs, weather factors, and air pollutants in a village near a marine litter hotspot across different seasons in Taiwan. Multiple methods were employed to evaluate whether the marine litter hotspot was a source of airborne MPs.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Microbiology, Pondicherry University, Kalapet, Puducherry 605014, India. Electronic address:
Climate change-induced rise in sea surface temperatures has led to an increase in the frequency and severity of coral bleaching events, ultimately leading to the deterioration of coral reefs, globally. However, the reef-building corals have an inherent capacity to acclimatize to thermal stress on pre-exposure to high temperatures by altering their endosymbiotic Symbiodiniaceae community composition towards a thermal tolerant composition. This reorganisation may become an important tool in coral's resilience to rapid environmental change.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Institute of Science, Nevşehir Hacı Bektaş Veli University, Nevşehir, Türkiye.
Managing basalt rock cutting waste in an environmentally responsible manner is crucial to mitigate its negative impacts and protect both the environment and human health. Recycling basalt rock cutting waste in geopolymer applications offers multiple environmental, economic, and performance benefits, making it a promising approach for sustainable construction practices. For this purpose, this study concerns about the performance of fiber-reinforced basalt rock-cutting waste-based geopolymer composites at high temperatures up to 1000 °C.
View Article and Find Full Text PDFJAMA Ophthalmol
January 2025
Ophthalmology Department, Dijon University Hospital, Dijon, France.
Importance: Some patients worldwide are asked to acquire an anti-vascular endothelial growth factor (anti-VEGF) agent from a pharmacy, store it, and then bring it to a physician for intravitreal injection (IVT). Anti-VEGF agents must be stored in the refrigerator to avoid bacterial contamination or denaturation. Some cases of severe intraocular inflammation have been reported following IVT of more recently approved anti-VEGF agents, which might be explained by thermal instability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!