AI Article Synopsis

Article Abstract

Background: Identification of complex multidimensional interaction patterns within microbial communities is the key to understand, modulate, and design beneficial microbiomes. Every community has members that fulfill an essential function affecting multiple other community members through secondary metabolism. Since microbial community members are often simultaneously involved in multiple relations, not all interaction patterns for such microorganisms are expected to exhibit a visually uninterrupted pattern. As a result, such relations cannot be detected using traditional correlation, mutual information, principal coordinate analysis, or covariation-based network inference approaches.

Results: We present a novel pattern-specific method to quantify the strength and estimate the statistical significance of two-dimensional co-presence, co-exclusion, and one-way relation patterns between abundance profiles of two organisms as well as extend this approach to allow search and visualize three-, four-, and higher dimensional patterns. The proposed approach has been tested using 2380 microbiome samples from the Human Microbiome Project resulting in body site-specific networks of statistically significant 2D patterns as well as revealed the presence of 3D patterns in the Human Microbiome Project data.

Conclusions: The presented study suggested that search for Boolean patterns in the microbial abundance data needs to be pattern specific. The reported presence of multidimensional patterns (which cannot be reduced to a combination of two-dimensional patterns) suggests that multidimensional (multi-organism) relations may play important roles in the organization of microbial communities, and their detection (and appropriate visualization) may lead to a deeper understanding of the organization and dynamics of microbial communities. Video Abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488411PMC
http://dx.doi.org/10.1186/s40168-020-00853-6DOI Listing

Publication Analysis

Top Keywords

microbial communities
16
patterns microbial
12
community members
12
patterns
10
boolean patterns
8
interaction patterns
8
human microbiome
8
microbiome project
8
microbial
6
identification multidimensional
4

Similar Publications

Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood.

View Article and Find Full Text PDF

Evaluation of variations in predominant gut microbiota members in inflammatory bowel disease using real-time PCR.

Mol Biol Rep

January 2025

Department of Internal Medicine, Faculty of Medicine, Urmia University of Medical Sciences, Imam Khomeini Hospital, Urmia, Iran.

Inflammatory Bowel Disease (IBD) is a persistent ailment that impacts many individuals worldwide. The interaction between the immune system and gut microbiome is thought to influence IBD development. This study aimed to assess some microbiota in IBD patients compared to healthy individuals.

View Article and Find Full Text PDF

Rice (Oryza sativa L.), Poaceae family, forms staple diet of half of world's population, and brinjal (Solanum melongena L.), an important solanaceous crop, are consumed worldwide.

View Article and Find Full Text PDF

Crystallization induced by fungi and bacteria.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Department of Botany, St Petersburg State University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russian Federation.

Crystallization induced by lithobiont microbial communities (fungi, bacteria, lichens) has received great attention in science and beyond. The studies discussed here focus on the mechanisms and factors of microbial biomineralization. The multilevel modelling approach, which made it possible to solve this interdisciplinary problem, is highlighted.

View Article and Find Full Text PDF

The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!