https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=32916629&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3291662920230816
2589-00422392020Sep25iScienceiScienceCarbon Nanotubes Enabled Laser 3D Printing of High-Performance Titanium with Highly Concentrated Reinforcement.10149810149810149810.1016/j.isci.2020.101498Zero- to two-dimensional nanomaterials have been incorporated into metal-matrices to improve the strength of metals, but challengingly, high-volume-fraction nanomaterials are difficult to disperse uniformly in metal matrices, severely degrading the ductility of conventionally processed metals. Here, a considerably dense uniform dispersion of in situ formed nanoscale lamellar TiC reinforcement (16.1 wt %) in Ti matrix is achieved through laser-tailored 3D printing and complete reaction of Ti powder with a small amount (1.0 wt %) of carbon nanotubes (CNTs). An enhanced tensile strength of 912 MPa and an outstanding fracture elongation of 16% are simultaneously achieved for laser-printed components, showing a maximum 350% improvement in "product of strength and elongation" compared with conventional Ti. In situ nanoscale TiC reinforcement favors the formation of ultrafine equiaxed Ti grains and metallurgically coherent interface with minimal lattice misfit between TiC lamellae and Ti matrix. Our approach hopefully provides a feasible way to broaden structural applications of CNTs in load-bearing Ti-based engineering components via laser-tailored reorganization with Ti.© 2020 The Author(s).GuDongdongDCollege of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.ChenHongyuHCollege of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.DaiDonghuaDCollege of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.MaChenglongCCollege of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.ZhangHanHCollege of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.LinKaijieKCollege of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.XiLixiaLCollege of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China.ZhaoTongTFraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, Aachen 52074, Germany.Chair for Laser Technology LLT, RWTH Aachen University, Steinbachstraße 15, Aachen 52074, Germany.HongChenCFraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, Aachen 52074, Germany.Chair for Laser Technology LLT, RWTH Aachen University, Steinbachstraße 15, Aachen 52074, Germany.GasserAndresAFraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, Aachen 52074, Germany.Chair for Laser Technology LLT, RWTH Aachen University, Steinbachstraße 15, Aachen 52074, Germany.PopraweReinhartRFraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, Aachen 52074, Germany.Chair for Laser Technology LLT, RWTH Aachen University, Steinbachstraße 15, Aachen 52074, Germany.engJournal Article20200825
United StatesiScience1017240382589-0042Materials ProcessingMechanical PropertyNanomaterialsThe authors declare no competing interests.
20206320207302020820202091261202091260202091120222020825epublish32916629PMC749054310.1016/j.isci.2020.101498S2589-0042(20)30690-8AlMangour B., Grzesiak D., Yang J.M. In-situ formation of novel TiC-particle-reinforced 316L stainless steel bulk-form composites by selective laser melting. J. Alloys Compd. 2017;706:409–418.Attar H., Calin M., Zhang L., Scudino S., Eckert J. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater. Sci. Eng. A. 2014;593:170–177.Attar H., Ehtemam-Haghighi S., Kent D., Dargusch M.S. Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: a review. Int. J. Mach. Tools Manuf. 2018;133:85–102.Attar H., Prashanth K.G., Zhang L., Calin M., Okulov I.V., Scudino S., Yang C., Eckert J. Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting. J. Mater. Sci. Technol. 2015;31:1001–1005.Bakshi S.R., Lahiri D., Agarwal A. Carbon nanotube reinforced metal matrix composites - a review. Int. Mater. Rev. 2010;55:41–64.Barin I. Third Edition. VCH Verlagsgesellschaft mbH; 1995. Thermochemical Data of Pure Substances; p. 1674.Bourell D., Kruth J.P., Leu M., Levy G., Rosen D., Beese A.M., Clare A. Materials for additive manufacturing. CIRP Ann. Manuf. Technol. 2017;66:659–681.Chen L.Y., Xu J.Q., Choi H., Pozuelo M., Ma X., Bhowmick S., Yang J.M., Mathaudhu S., Li X.C. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature. 2015;528:539–543.26701055Collins P.C., Brice D.A., Samimi P., Ghamarian I., Fraser H.L. Microstructural control of additively manufactured metallic materials. Annu. Rev. Mater. Res. 2016;46:63–91.Dadbakhsh S., Mertens R., Hao L., Humbeeck J., Kruth J.-P. Selective laser melting to manufacture “in situ” metal matrix composites: a review. Adv. Eng. Mater. 2019;21:1801244.Das M., Balla V.K., Basu D., Bose S., Bandyopadhyay A. Laser processing of SiC-particle-reinforced coating on titanium. Scripta Mater. 2010;63:438–441.De Volder M.F.L., Tawfick S.H., Baughman R.H., Hart A.J. Carbon nanotubes: present and future commercial applications. Science. 2013;339:535–539.23372006Debroy T., Mukherjee T., Milewski J.O., Elmer J.W., Ribic B., Blecher J.J., Zhang W. Scientific, technological and economic issues in metal printing and their solutions. Nat. Mater. 2019;18:1026–1032.31263223Figueiredo R.B., Barbosa E.R.D., Zhao X.C., Yang X.R., Liu X.Y., Cetlin P.R., Langdon T.G. Improving the fatigue behavior of dental implants through processing commercial purity titanium by equal-channel angular pressing. Mater. Sci. Eng. A. 2014;619:312–318.Gu D., Hagedorn Y.C., Meiners W., Meng G., Batista R., Wissenbach K., Poprawe R. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 2012;60:3849–3860.Gu D., Meng G., Li C., Meiners W., Poprawe R. Selective laser melting of TiC/Ti bulk nanocomposites: influence of nanoscale reinforcement. Scripta Mater. 2012;67:185–188.Gunderov D.V., Polyakov A.V., Semenova I.P., Raab G.I., Churakova A.A., Gimaltdinova E.I., Sabirov I., Segurado J., Sitdikov V.D., Alexandrov I.V. Evolution of microstructure, macrotexture and mechanical properties of commercially pure Ti during ECAP-conform processing and drawing. Mater. Sci. Eng. A. 2013;562:128–136.Harada T., Ohkoshi H. Growth and structure of Ti films deposited on chemically polished MgO(100) substrates. J. Cryst. Growth. 1997;171:433–441.Herzog D., Seyda V., Wycisk E., Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016;117:371–392.Hu Z., Wang D., Chen C., Wang X., Chen X., Nian Q. Bulk titanium–graphene nanocomposites fabricated by selective laser melting. J. Mater. Res. 2019;34:1744–1753.Hugosson H.W., Korzhavyi P., Jansson U., Johansson B., Eriksson O. Phase stabilities and structural relaxations in substoichiometric TiC1-x. Phys. Rev. B. 2001;63:165116.Kim K.M. Morphological instability under constitutional supercooling during the crystal growth of InSb from the melt under stabilizing thermal gradient. J. Cryst. Growth. 1978;44:403–413.Kinloch I.A., Suhr J., Lou J., Young R.J., Ajayan P.M. Composites with carbon nanotubes and graphene: an outlook. Science. 2018;362:547–553.30385571Koike M., Martinez K., Guo L., Chahine G., Kovacevic R., Okabe T. Evaluation of titanium alloy fabricated using electron beam melting system for dental applications. J. Mater. Process. Technol. 2011;211:1400–1408.Landry K., Kalogeropoulou S., Eustathopoulos N. Wettability of carbon by aluminum and aluminum alloys. Mater. Sci. Eng. A. 1998;254:99–111.Leung C.L.A., Marussi S., Atwood R.C., Towrie M., Withers P.J., Lee P.D. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat. Commun. 2018;9:1355.PMC589356829636443Li H., Yang Z., Cai D., Jia D., Zhou Y. Microstructure evolution and mechanical properties of selective laser melted bulk-form titanium matrix nanocomposites with minor B4C additions. Mater. Des. 2019;185:108245.Li S., Sun B., Imai H., Mimoto T., Kondoh K. Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Compos. Part A Appl. Sci. Manuf. 2013;48:57–66.Liang C., Ma M., Jia M., Raynova S., Yan J., Zhang D. The tensile mechanical properties of thermomechanically consolidated titanium at different strain rates. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015;46A:5095–5102.Lin T.C., Cao C., Sokoluk M., Jiang L., Wang X., Schoenung J., Lavernia E., Li X. Aluminum with dispersed nanoparticles by laser additive manufacturing. Nat. Commun. 2019;10:4124.PMC673934331511518Lu K. The future of metals. Science. 2010;328:319–320.20395503Lu K., Lu L., Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science. 2009;324:349–352.19372422Ma C., Chen L., Cao C., Li X. Nanoparticle-induced unusual melting and solidification behaviours of metals. Nat. Commun. 2017;8:14178.PMC525364028098147Macdonald E., Wicker R. Multiprocess 3D printing for increasing component functionality. Science. 2016;353:aaf2093.27708075Martin J.H., Yahata B.D., Hundley J.M., Mayer J.A., Schaedler T.A., Pollock T.M. 3D printing of high-strength aluminium alloys. Nature. 2017;549:365–369.28933439Niinomi M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A. 1998;243:231–236.Pollock T.M. Weight loss with magnesium alloys. Science. 2010;328:986–987.20489013Reshadi F., Faraji G., Baniassadi M., Tajeddini M. Surface modification of severe plastically deformed ultrafine grained pure titanium by plasma electrolytic oxidation. Surf. Coat. Technol. 2017;316:113–121.Rostoker W. Observations on the lattice parameters of the alpha and TiO phases in the titanium–oxygen system. JOM. 1952;4:981–982.Shukrun E., Cooperstein I., Magdassi S. 3D–printed organic–ceramic complex hybrid structures with high silica content. Adv. Sci. 2018;5:1800061.PMC609699630128232Stolyarov V., Zhu Y., Alexandrov I.V., Lowe T., Valiev R. Influence of ECAP routes on microstructure and properties of pure Ti. Mater. Sci. Eng. A Struct. 2001;299:59–67.Thijs L., Kempen K., Kruth J.-P., Humbeeck J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013;61:1809–1819.Tian W., VahidMohammadi A., Reid M., Wang Z., Ouyang L., Erlandsson J., Pettersson T., Wågberg L., Beidaghi M., Hamedi M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 2019;31:1902977.31408235Tjong S. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R Rep. 2013;74:281–350.Wang Y., Voisin T., McKeown J., Ye J., Calta N., Li Z., Zeng Z., Zhang Y., Chen W., Roehling T. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 2018;17:63–71.29115290Wei Y., Li Y., Zhu L., Liu Y., Lei X., Wang G., Wu Y., Mi Z., Liu J., Wang H., Gao H. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat. Commun. 2014;5:3580.PMC398881724686581Wysocki B., Maj P., Krawczyńska A., Zdunek J., Rożniatowski K., Kurzydłowski K.J., Święszkowski W. Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM) J. Mater. Process. Technol. 2017;241:13–23.Xu C., Zhu W. Comparison of microstructures and mechanical properties between forging and rolling processes for commercially pure titanium. Trans. Nonferrous Met. Soc. China. 2012;22:1939–1946.Yogamalar R., Ramasamy S., Vinu A., Ariga K., Bose A. X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 2009;149:1919–1923.Zhakeyev A., Wang P., Zhang L., Shu W., Wang H., Xuan J. Additive manufacturing: unlocking the evolution of energy materials. Adv. Sci. 2017;4:1700187.PMC564424029051861Zhang Y., Wei Z., Shi L., Xi M. Characterization of laser powder deposited Ti–TiC composites and functional gradient materials. J. Mater. Process. Technol. 2008;206:438–444.Zhao X., Yang X., Liu X., Wang X., Langdon T. The processing of pure titanium through multiple passes of ECAP at room temperature. Mater. Sci. Eng. A Struct. 2010;527:6335–6339.Zhu T., Li J., Samanta A., Kim H.G., Suresh S. Interface plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. U S A. 2007;104:3031–3036.PMC180560817360604Zinelis S. Effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium castings. J. Prosthet. Dent. 2000;84:575–582.11105014