Administration of parenteral liquid crystalline phases, forming in-vivo with tunable nanostructural features and sustained release properties, offers an attractive approach for treatment of infections and local drug delivery. It has also a potential use for postoperative pain management after arthroscopic knee surgery. However, the optimal use of this drug delivery principle requires an improved understanding of the involved dynamic structural transitions after administration of low-viscous stimulus-responsive lipid precursors and their fate after direct contact with the biological environment. These precursors (preformulations) are typically based on a single biologically relevant lipid (or a lipid combination) with non-lamellar liquid crystalline phase forming propensity. In relation to liquid crystalline depot design for intra-articular drug delivery, it was our interest in the present study to shed light on such dynamic structural transitions by combining synchrotron SAXS with a remote controlled addition of synovial fluid (or buffer containing 2% (w/v) albumin). This combination allowed for monitoring in real-time the hydration-triggered dynamic structural events on exposure of the lipid precursor (organic stock solution consisting of the binary lipid mixture of monoolein and castor oil) to excess synovial fluid (or excess buffer). The synchrotron SAXS findings indicate a fast generation of inverse bicontinuous cubic phases within few seconds. The effects of (i) the organic solvent N-methyl-2-pyrolidone (NMP), (ii) the lipid composition, and (iii) the albumin content on modulating the structures of the self-assembled lipid aggregates and the implications of the experimental findings in the design of liquid crystalline depots for intra-articular drug delivery are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.08.084 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Singapore Eye Research Institute, Singapore.
Purpose: To investigate the aqueous proteomics and metabolomics in low-energy and high-energy femtosecond laser-assisted cataract surgery (FLACS).
Methods: In this prospective observational study, 72 patients were randomized to 3 groups: low-energy FLACS, high-energy FLACS, and conventional phacoemulsification (controls). Aqueous was collected after femtosecond laser treatment or at the beginning of surgery (controls).
J Chem Phys
January 2025
Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
How condensed-matter simulations depend on the number of molecules being simulated (N) is sometimes itself a valuable piece of information. Liquid crystals provide a case in point. Light scattering and 2d-IR experiments on isotropic-phase samples display increasingly large orientational fluctuations ("pseudo-nematic domains") as the samples approach their nematic phase.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.
A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Dankook University, 119, Dandae-ro, Chungnam 448-701, Korea.
This paper presents the reversible transformation between two polymorphs of a hexacatenar liquid crystal () with distinct fluorescence colors at room temperature (RT). This method utilizes mechanical pressure (mechanochromism) and an electric field (E-field-chromism). The molecule (), designed with a pyrene core and 1,2,3-triazole linkers, exhibits a blue-emissive crystalline (CRY) polymorph () and a green-emissive liquid crystalline (LC) polymorph () at RT, depending on the cooling rate from the liquid phase.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Jingdezhen Ceramic Research Institute, Jingdezhen 333001, China.
The Guangyuan kiln, located in the Sichuan Province, Southwest China during the Song Dynasty (960-1279 A.D.), is renowned for its high-temperature iron-series glazed wares, including pure black glazed ware, hare's fur glazed ware, glossy brown glazed ware, and matte brown glazed ware.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!