Facile synthesis of anionic porous organic polymer for ethylene purification.

J Colloid Interface Sci

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

Published: January 2021

The removal of acetylene from ethylene is of vital significance in the petroleum and chemical industry, the presence of trace acetylene impurities in ethylene polymerization process could lead to the interruption of ethylene polymerization. Herein, we construct a new anionic porous organic polymer using potassium tetraphenylborate via Friedel-Crafts alkylation reaction under mild conditions. The resulting material, APOP, possesses good thermal stability and a decent BET surface area, as exemplified by thermogravimetric analysis measurement and nitrogen gas sorption experiment. Acetylene and ethylene adsorption isotherms reveal that APOP has a higher adsorption capacity of acetylene than that of ethylene under same conditions. Ideal adsorbed solution theory calculations and breakthrough experiments both demonstrate that APOP is capable of selective adsorption of acetylene over ethylene. To the best of our knowledge, APOP represents the first anionic porous organic polymer material capable of selective adsorption of acetylene over ethylene, and the exploration of APOP may provide a new way for these key gas separations using ionic porous organic polymer materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.08.104DOI Listing

Publication Analysis

Top Keywords

acetylene ethylene
20
porous organic
16
organic polymer
16
anionic porous
12
ethylene
8
ethylene polymerization
8
capable selective
8
selective adsorption
8
adsorption acetylene
8
acetylene
6

Similar Publications

The abandoned coal in goaf will adsorb the gases ethylene (CH) and acetylene (CH) produced by coal oxidation, which makes the concentration data of the indicator gas inaccurate. Therefore, the adsorption law of coal and CH and CH gas is explored. The macromolecular structure model of coal was established and optimized by simulation, and the gas adsorption process was simulated by means of grand canonical Monte Carlo method.

View Article and Find Full Text PDF

Hydrogen-localization Transfer Regulation in 3D COFs Enhances Photocatalytic Acetylene Semi-hydrogenation to Ethylene.

Angew Chem Int Ed Engl

January 2025

South China Normal University, school of chemistry, No. 378, Waihuan West Road, Panyu District, 510006, Guangzhou, CHINA.

In this work, a series of new crystalline three-dimensional covalent organic frameworks (3D COFs) based on [8+4] construction was designed and successfully realized efficient photocatalytic acetylene (C2H2) hydrogenation to ethylene (C2H4). By regulating the hydrogen-localization transfer effect in these 3D COFs,the Cz-Co-COF-H containing cobalt glyoximate active centers exhibited excellent C2H2-to-C2H4 performance, with an average C2H4 yield of 1755.33 μmol g-1 h-1 in pure C2H2, also showed near 100% conversion of C2H2 in 1% C2H2 contained crude C2H4 mixtures (industry-relevant conditions), and finally obtain polymer grade C2H4.

View Article and Find Full Text PDF

The discovery of new structures is very important for metal-organic framework (MOF) adsorbents and their application in gas separation, where the design of ligands and the selection of metal ions play a decisive role. Herein, we synthesized two isoreticular Zn-MOFs, UPC-250 and UPC-251, composed of imidazole-based tricarboxylic acid ligands and binuclear zinc clusters. The pore environment was regulated via modifying fluorine atoms at different positions of ligands, and one-step purification of ethylene from acetylene/ethylene/ethane ternary mixture was realized in UPC-251.

View Article and Find Full Text PDF

Solar Wind Irradiation of Methane and Methane-Water Ices: A Molecular Dynamics Approach.

ACS Earth Space Chem

December 2024

Thermal Protection Materials Branch, NASA Ames Research Center, Moffett Field, California 94035, United States.

Molecular dynamics simulations were performed to characterize reaction products, resulting from solar wind irradiation, namely, H, of methane and methane-water ices. In our approach, we used seven 0.829 keV H (total energy of 5.

View Article and Find Full Text PDF

Anomalous Role of Carbon in Pd-Catalyzed Selective Hydrogenation.

Angew Chem Int Ed Engl

December 2024

Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, United States.

Carbonaceous species, including subsurface carbidic carbon and surface carbon, play crucial roles in heterogeneous catalysis. Many reports suggested the importance of subsurface carbon in the selective hydrogenation of alkynes over Pd-based catalysts. However, the role of surface carbon has been largely overlooked.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!