Effect of microplastics on ecosystem functioning: Microbial nitrogen removal mediated by benthic invertebrates.

Sci Total Environ

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China. Electronic address:

Published: February 2021

While ecotoxicological impacts of microplastics on aquatic organisms have started to be investigated recently, impacts on ecosystem functions mediated by benthic biota remain largely unknown. We investigated the effect of microplastics on nitrogen removal in freshwater sediments where microorganisms and benthic invertebrates (i.e., chironomid larvae) co-existed. Using microcosm experiments, sediments with and without invertebrate chironomid larvae were exposed to microplastics (polyethylene) at concentrations of 0, 0.1, and 1 wt%. After 28 days of exposure, the addition of microplastics or chironomid larvae promoted the growth of denitrifying and anammox bacteria, leading to increased total nitrogen removal, in both cases. However, in microcosms with chironomid larvae and microplastics co-existing, nitrogen removal was less than the sum of their individual effects, especially at microplastics concentration of 1 wt%, indicating an adverse effect on microbial nitrogen removal mediated by macroinvertebrates. This study reveals that the increasing concentration of microplastics entangled the nitrogen cycling mediated by benthic invertebrates in freshwater ecosystems. These findings highlight the pursuit of a comprehensive understanding of the impacts of microplastics on the functioning in freshwater ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142133DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
20
chironomid larvae
16
mediated benthic
12
benthic invertebrates
12
microplastics
9
microbial nitrogen
8
removal mediated
8
impacts microplastics
8
freshwater ecosystems
8
nitrogen
6

Similar Publications

Differences in the efficiency and mechanisms of different iron-based materials driving synchronous nitrogen and phosphorus removal.

Environ Res

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China. Electronic address:

Iron-dependent denitrification has been substantially investigated worldwide due to the advantages of low cost, high efficiency, and synchronized phosphorous removal. However, differences in nitrogen metabolism processes with different iron-based materials as electron donors have not been systematically studied. This study investigated the efficacy of nitrogen and phosphate removal using various iron-based materials as electron donors.

View Article and Find Full Text PDF

Mainstream anammox faces challenges in adapting to non-optimal temperatures and managing greenhouse gas emissions. This study investigates nitrogen removal and NO emissions in attached-growth anammox reactors subjected to rapid temperature shifts (15 - 55 °C). Temperature reductions to 15 - 25 °C had minimal impact on the anammox bacterial populations, with nitrogen removal rates of 0.

View Article and Find Full Text PDF

Deciphering the key role of biofilm and mechanisms in high-strength nitrogen removal within the anammox coupled partial S-driven autotrophic denitrification system.

Bioresour Technol

December 2024

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:

Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.

View Article and Find Full Text PDF

Evaluating the performance and stability of microalgal-bacterial granular sludge in municipal wastewater treatment plants.

J Environ Manage

December 2024

Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan, 430065, China. Electronic address:

The microalgal-bacterial granular sludge (MBGS) process shows potential for carbon-neutral wastewater treatment, yet its application in wastewater treatment plants remains underexplored. This study attempted to use a continuous-flow raceway reactor to treat real municipal wastewater using the MBGS process. The results showed that the removal efficiencies of organics peaked on the fifth day, while declining trends were observed for nitrogen and phosphorus removal.

View Article and Find Full Text PDF

Invasive alien plants pose a great threat to local plants and ecosystems. How to effectively alleviate this hazard is an unresolved issue. This study explored the carbon release characteristics of an invasive plant Spartina alterniflora and evaluated the ability of nitrogen removal from shrimp culture wastewater through constructing seawater wetland.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!