Continuous Manufacturing of Ketoprofen Delayed Release Pellets Using Melt Extrusion Technology: Application of QbD Design Space, Inline Near Infrared, and Inline Pellet Size Analysis.

J Pharm Sci

School of Pharmacy, University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA. Electronic address:

Published: December 2020

Delayed-release dosage forms are mainly manufactured as batch processes and include coated tablets, pellets, or particles with gastric resistant polymers. Authors propose a novel approach using the hot-melt extrusion technique to prepare delayed release dosage forms via a continuous manufacturing process, a new trend in the pharmaceutical industry. A full factorial design was employed to correlate input variables, including stearic acid (SA) content, drug content, and pellet size with drug release properties of the pellets. PLS fit method suitably elaborated the relationship between input and output variables with reasonably good fit and goodness of prediction. All three input factors influenced drug release in enzyme-free simulated gastric fluid (SGF) after 120 min; however, SA content did not significantly affect drug dissolution in the enzyme-free simulated intestinal fluid (SIF). An optimized formulation and design space were determined by overlaying multiple contours established from regression equations. The continuous manufacturing process was successfully monitored using inline near-infrared (NIR) and inline particle size analysis, with drug load and pellet size being well-controlled within the design space. The obtained pellets released less than 5% after 120 min in SGF and more than 85% and 95% after 30 min and 45 min, respectively, after switching to SIF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7680423PMC
http://dx.doi.org/10.1016/j.xphs.2020.09.007DOI Listing

Publication Analysis

Top Keywords

continuous manufacturing
12
design space
12
pellet size
12
delayed release
8
size analysis
8
dosage forms
8
manufacturing process
8
drug release
8
enzyme-free simulated
8
drug
5

Similar Publications

A fault tolerant CSA in QCA technology for IoT devices.

Sci Rep

January 2025

Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.

According to recent research, with the ever-increasing use of Internet of Things (IoT) devices, there has arisen an ever-growing need for high-performance yet low-power circuits that can efficiently process information. Quantum-dot Cellular Automata (QCA) has emerged as a promising alternative to conventional complementary metal-oxide-semiconductor (CMOS) technology due to its great potential in digital design at nanoscale levels on account of very low power consumption and very high processing speed. However, QCA circuits are inherently prone to faults due to variations in manufacturing processes and due to the influence of environmental factors.

View Article and Find Full Text PDF

Data-driven exploration of weak coordination microenvironment in solid-state electrolyte for safe and energy-dense batteries.

Nat Commun

January 2025

Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.

The unsatisfactory ionic conductivity of solid polymer electrolytes hinders their practical use as substitutes for liquid electrolytes to address safety concerns. Although various plasticizers have been introduced to improve lithium-ion conduction kinetics, the lack of microenvironment understanding impedes the rational design of high-performance polymer electrolytes. Here, we design a class of Hofmann complexes that offer continuous two-dimensional lithium-ion conduction channels with functional ligands, creating highly conductive electrolytes.

View Article and Find Full Text PDF

In current alloplastic total temporomandibular joint replacements (TMJRs) typically the lateral pterygoid muscle (LPM) insertion is sacrificed, affecting joint function. This study assesses a novel additively manufactured TMJR (CADskills BV, Gent, Belgium) designed to enable LPM reinsertion through a scaffold feature on the implant. Thirteen TMJRs were implanted in Swifter crossbreed sheep, with follow-up CT scans after 288 days to evaluate LPM reintegration.

View Article and Find Full Text PDF

Residual antimicrobial agents in wastewater and solid waste from antimicrobial manufacturing facilities can potentially contaminate environments. The World Health Organization has established technical guidelines for managing antimicrobial resistance (AMR) in pharmaceutical wastewater and solid waste. However, the scarcity of publicly available data on antimicrobial manufacturing processes impedes the development of effective mitigation strategies.

View Article and Find Full Text PDF

Recent Developments in Ventricular Assist Device Therapy.

Rev Cardiovasc Med

January 2025

Center for Preclinical Surgical & Interventional Research, The Texas Heart Institute, Houston, TX 77030, USA.

The evolution of left ventricular assist devices (LVADs) from large, pulsatile systems to compact, continuous-flow pumps has significantly improved implantation outcomes and patient mobility. Minimally invasive surgical techniques have emerged that offer reduced morbidity and enhanced recovery for LVAD recipients. Innovations in wireless power transfer technologies aim to mitigate driveline-related complications, enhancing patient safety and quality of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!