Whenever we move our eyes, some visual information obtained before a saccade is combined with the visual information obtained after a saccade. Interestingly, saccades rarely land exactly on the saccade target, which may pose a problem for transsaccadic perception as it could affect the quality of postsaccadic input. Recently, however, we showed that transsaccadic feature integration is actually unaffected by deviations of saccade landing points. Possibly, transsaccadic integration remains unaffected because the presaccadic shift of attention follows the intended saccade target and not the actual saccade landing point during regular saccades. Here, we investigated whether saccade landing point errors can in fact alter transsaccadic perception when the presaccadic shift of attention follows the saccade landing point deviation. Given that saccadic adaptation not only changes the saccade vector, but also the presaccadic shift of attention, we combined a feature report paradigm with saccadic adaptation. Observers reported the color of the saccade target, which occasionally changed slightly during a saccade to the target. This task was performed before and after saccadic adaptation. The results showed that, after adaptation, presaccadic color information became less precise and transsaccadic perception had a stronger reliance on the postsaccadic color estimate. Therefore, although previous studies have shown that transsaccadic perception is generally unaffected by saccade landing point deviations, our results reveal that this cannot be considered a general property of the visual system. When presaccadic shifts of attention follow altered saccade landing points, transsaccadic perception is affected, suggesting that transsaccadic feature perception might be dependent on visual spatial attention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7488614PMC
http://dx.doi.org/10.1167/jov.20.9.8DOI Listing

Publication Analysis

Top Keywords

saccade landing
28
transsaccadic perception
24
landing point
20
saccadic adaptation
16
saccade target
16
saccade
14
presaccadic shift
12
shift attention
12
transsaccadic
9
point deviations
8

Similar Publications

Brain imaging performed in natural settings is known as mobile brain and body imaging (MoBI). One of the features which distinguishes MoBI and laboratory-based experiments is the body posture. Previous studies pointed to mechanical, autonomic, cortical and cognitive differences between upright stance and sitting or reclining.

View Article and Find Full Text PDF

In order to bring stimuli of interest into our central field of vision, we perform saccadic eye movements. After every saccade, the error between the predicted and actual landing position is monitored. In the laboratory, artificial post-saccadic errors are created by displacing the target during saccade execution.

View Article and Find Full Text PDF
Article Synopsis
  • Our eyes constantly make quick movements called saccades and small adjustments known as fixational eye movements (FEMs), which help maintain clear vision rather than causing blurriness.
  • There’s a growing theory suggesting that our visual system relies on a space-to-time mechanism due to these eye movements, implying that FEMs are crucial for seeing clearly.
  • However, this theory conflicts with physiological evidence indicating that visual information relies mainly on the quick neural signals when our eyes fixate on a target, suggesting that these saccades are enough for normal perception without needing the FEMs.
View Article and Find Full Text PDF

Presaccadic preview shapes postsaccadic processing more where perception is poor.

Proc Natl Acad Sci U S A

September 2024

Department of Psychology and Center for Neural Science, New York University, New York, NY 10012.

The presaccadic preview of a peripheral target enhances the efficiency of its postsaccadic processing, termed the extrafoveal preview effect. Peripheral visual performance-and thus the quality of the preview-varies around the visual field, even at isoeccentric locations: It is better along the horizontal than vertical meridian and along the lower than upper vertical meridian. To investigate whether these polar angle asymmetries influence the preview effect, we asked human participants to preview four tilted gratings at the cardinals, until a central cue indicated which one to saccade to.

View Article and Find Full Text PDF

Different temporal dynamics of foveal and peripheral visual processing during fixation.

Proc Natl Acad Sci U S A

September 2024

Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627.

Humans explore visual scenes by alternating short fixations with saccades directing the fovea to points of interest. During fixation, the visual system not only examines the foveal stimulus at high resolution, but it also processes the extrafoveal input to plan the next saccade. Although foveal analysis and peripheral selection occur in parallel, little is known about the temporal dynamics of foveal and peripheral processing upon saccade landing, during fixation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!